Namespaces
Variants
Actions

Difference between revisions of "Tightness of a topological space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (typo)
m (→‎References: isbn link)
 
Line 5: Line 5:
  
 
====References====
 
====References====
* Mary Ellen Rudin, ''Lectures on Set Theoretic Topology'', American Mathematical Society (1975) ISBN 0-8218-1673-X {{ZBL|0318.54001}}
+
* Mary Ellen Rudin, ''Lectures on Set Theoretic Topology'', American Mathematical Society (1975) {{ISBN|0-8218-1673-X}} {{ZBL|0318.54001}}

Latest revision as of 20:48, 5 December 2023

2020 Mathematics Subject Classification: Primary: 54A25 [MSN][ZBL]

One of the cardinal characteristics of a topological space $X$. The local tightness $t(x,X)$ at a point $x \in X$ is the least cardinality $\mathfrak{t}\ge\aleph_0$ such that if $x$ is in the closure $\bar A$, then $A$ contains a subset $B$ of cardinality $\le \mathfrak{t}$ with $x \in\bar B$ . The tightness $t(X)$ is the least upper bound of the local tightness.


References

  • Mary Ellen Rudin, Lectures on Set Theoretic Topology, American Mathematical Society (1975) ISBN 0-8218-1673-X Zbl 0318.54001
How to Cite This Entry:
Tightness of a topological space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tightness_of_a_topological_space&oldid=42687