Namespaces
Variants
Actions

Difference between revisions of "Matrix algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0627901.png
 +
$#A+1 = 55 n = 0
 +
$#C+1 = 55 : ~/encyclopedia/old_files/data/M062/M.0602790 Matrix algebra,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''algebra of matrices''
 
''algebra of matrices''
  
A subalgebra of the full matrix algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627901.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627902.png" />-dimensional matrices over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627903.png" />. The operations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627904.png" /> are defined as follows:
+
A subalgebra of the full matrix algebra $  F _ {n} $
 +
of all $  ( n \times n) $-
 +
dimensional matrices over a field $  F $.  
 +
The operations in $  F _ {n} $
 +
are defined as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627905.png" /></td> </tr></table>
+
$$
 +
\lambda a  = \| \lambda a _ {ij} \| ,\ \
 +
a + b  = \| a _ {ij} + b _ {ij} \| ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627906.png" /></td> </tr></table>
+
$$
 +
ab  = = \| c _ {ij} \| ,\  c _ {ij}  = \
 +
\sum _ {\nu = 1 } ^ { n }  a _ {i \nu }  b _ {\nu j }
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627907.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627908.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m0627909.png" /> is isomorphic to the algebra of all endomorphisms of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279010.png" />-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279011.png" />. The dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279012.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279013.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279014.png" />. Every associative algebra with an identity (cf. [[Associative rings and algebras|Associative rings and algebras]]) and of dimension over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279015.png" /> at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279016.png" /> is isomorphic to some subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279017.png" />. An associative algebra without an identity and with dimension over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279018.png" /> less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279019.png" /> can also be isomorphically imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279020.png" />. By Wedderburn's theorem, the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279021.png" /> is simple, i.e. it has only trivial two-sided ideals. The centre of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279022.png" /> consists of all scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279023.png" />-dimensional matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279024.png" />. The group of invertible elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279025.png" /> is the [[General linear group|general linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279026.png" />. Every [[Automorphism|automorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279028.png" /> is inner:
+
where $  \lambda \in F $,  
 +
and $  a = \| a _ {ij} \| , b = \| b _ {ij} \| \in F _ {n} $.  
 +
The algebra $  F _ {n} $
 +
is isomorphic to the algebra of all endomorphisms of an $  n $-
 +
dimensional vector space over $  F $.  
 +
The dimension of $  F _ {n} $
 +
over $  F $
 +
equals $  n  ^ {2} $.  
 +
Every associative algebra with an identity (cf. [[Associative rings and algebras|Associative rings and algebras]]) and of dimension over $  F $
 +
at most $  n $
 +
is isomorphic to some subalgebra of $  F _ {n} $.  
 +
An associative algebra without an identity and with dimension over $  F $
 +
less than $  n $
 +
can also be isomorphically imbedded in $  F _ {n} $.  
 +
By Wedderburn's theorem, the algebra $  F _ {n} $
 +
is simple, i.e. it has only trivial two-sided ideals. The centre of the algebra $  F _ {n} $
 +
consists of all scalar $  ( n \times n) $-
 +
dimensional matrices over $  F $.  
 +
The group of invertible elements of $  F _ {n} $
 +
is the [[General linear group|general linear group]] $  \mathop{\rm GL} ( n, F  ) $.  
 +
Every [[Automorphism|automorphism]] $  h $
 +
of $  F _ {n} $
 +
is inner:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279029.png" /></td> </tr></table>
+
$$
 +
h( x)  = txt  ^ {-} 1 ,\ \
 +
x \in F _ {n} ,\ \
 +
t \in  \mathop{\rm GL} ( n, F  ).
 +
$$
  
Every irreducible matrix algebra (cf. also [[Irreducible matrix group|Irreducible matrix group]]) is simple. If a matrix algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279030.png" /> is absolutely reducible (for example, if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279031.png" /> is algebraically closed), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279032.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279033.png" /> (Burnside's theorem). A matrix algebra is semi-simple if and only if it is completely reducible (cf. also [[Completely-reducible matrix group|Completely-reducible matrix group]]).
+
Every irreducible matrix algebra (cf. also [[Irreducible matrix group|Irreducible matrix group]]) is simple. If a matrix algebra $  A $
 +
is absolutely reducible (for example, if the field $  F $
 +
is algebraically closed), then $  A = F _ {n} $
 +
for $  n > 1 $(
 +
Burnside's theorem). A matrix algebra is semi-simple if and only if it is completely reducible (cf. also [[Completely-reducible matrix group|Completely-reducible matrix group]]).
  
Up to conjugation, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279034.png" /> contains a unique maximal nilpotent subalgebra — the algebra of all upper-triangular matrices with zero diagonal entries. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279035.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279036.png" />-dimensional commutative subalgebra if and only if
+
Up to conjugation, $  F _ {n} $
 +
contains a unique maximal nilpotent subalgebra — the algebra of all upper-triangular matrices with zero diagonal entries. In $  F _ {n} $
 +
there is an $  r $-
 +
dimensional commutative subalgebra if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279037.png" /></td> </tr></table>
+
$$
 +
r  \leq  \left [
 +
\frac{n  ^ {2} }{4}
 +
\right ] + 1
 +
$$
  
(Schur's theorem). Over the complex field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279038.png" /> the set of conjugacy classes of maximal commutative subalgebras of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279039.png" /> is finite for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279040.png" /> and infinite for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279041.png" />.
+
(Schur's theorem). Over the complex field $  \mathbf C $
 +
the set of conjugacy classes of maximal commutative subalgebras of $  \mathbf C _ {n} $
 +
is finite for $  n < 6 $
 +
and infinite for $  n > 6 $.
  
In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279042.png" /> one has the standard identity of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279043.png" />:
+
In $  F _ {n} $
 +
one has the standard identity of degree $  2n $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279044.png" /></td> </tr></table>
+
$$
 +
\sum _ {\sigma \in S _ {2 n }  } (  \mathop{\rm sgn}  \sigma )
 +
x _ {\sigma ( 1) }  \dots x _ {\sigma ( 2n) }  = 0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279045.png" /> denotes the [[Symmetric group|symmetric group]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279046.png" /> the sign of the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279047.png" />, but no identity of lower degree (cf. [[Amitsur–Levitzki theorem]]).
+
where $  S _ {2n} $
 +
denotes the [[Symmetric group|symmetric group]] and $  \mathop{\rm sgn}  \sigma $
 +
the sign of the permutation $  \sigma $,  
 +
but no identity of lower degree (cf. [[Amitsur–Levitzki theorem]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) {{MR|1535024}} {{MR|0227205}} {{ZBL|0177.05801}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German) {{MR|1541390}} {{ZBL|1032.00002}} {{ZBL|1032.00001}} {{ZBL|0903.01009}} {{ZBL|0781.12003}} {{ZBL|0781.12002}} {{ZBL|0724.12002}} {{ZBL|0724.12001}} {{ZBL|0569.01001}} {{ZBL|0534.01001}} {{ZBL|0997.00502}} {{ZBL|0997.00501}} {{ZBL|0316.22001}} {{ZBL|0297.01014}} {{ZBL|0221.12001}} {{ZBL|0192.33002}} {{ZBL|0137.25403}} {{ZBL|0136.24505}} {{ZBL|0087.25903}} {{ZBL|0192.33001}} {{ZBL|0067.00502}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D.A. Suprunenko, R.I. Tyshkevich, "Commutable matrices" , Minsk (1966) (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) {{MR|1535024}} {{MR|0227205}} {{ZBL|0177.05801}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German) {{MR|1541390}} {{ZBL|1032.00002}} {{ZBL|1032.00001}} {{ZBL|0903.01009}} {{ZBL|0781.12003}} {{ZBL|0781.12002}} {{ZBL|0724.12002}} {{ZBL|0724.12001}} {{ZBL|0569.01001}} {{ZBL|0534.01001}} {{ZBL|0997.00502}} {{ZBL|0997.00501}} {{ZBL|0316.22001}} {{ZBL|0297.01014}} {{ZBL|0221.12001}} {{ZBL|0192.33002}} {{ZBL|0137.25403}} {{ZBL|0136.24505}} {{ZBL|0087.25903}} {{ZBL|0192.33001}} {{ZBL|0067.00502}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D.A. Suprunenko, R.I. Tyshkevich, "Commutable matrices" , Minsk (1966) (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A frequently used notation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279048.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279049.png" />.
+
A frequently used notation for $  F _ {n} $
 +
is $  M _ {n} ( F  ) $.
  
Wedderburn's theorem on the structure of semi-simple rings says that any semi-simple ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279050.png" /> is a finite direct product of full matrix rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279051.png" /> over skew-fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279052.png" />, and conversely every ring of this form is semi-simple. Further, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279054.png" /> are uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062790/m06279055.png" />.
+
Wedderburn's theorem on the structure of semi-simple rings says that any semi-simple ring $  R $
 +
is a finite direct product of full matrix rings $  M _ {n _ {i}  } ( F _ {i} ) $
 +
over skew-fields $  F _ {i} $,  
 +
and conversely every ring of this form is semi-simple. Further, the $  F _ {i} $
 +
and $  n _ {i} $
 +
are uniquely determined by $  R $.
  
 
The Wedderburn–Artin theorem says that a right Artinian simple ring is a total matrix ring (E. Artin, 1928; proved for finite-dimensional algebras by J.H.M. Wedderburn in 1907). A far-reaching generalization of this is the Jacobson density theorem, cf. [[Associative rings and algebras|Associative rings and algebras]] and [[#References|[a1]]].
 
The Wedderburn–Artin theorem says that a right Artinian simple ring is a total matrix ring (E. Artin, 1928; proved for finite-dimensional algebras by J.H.M. Wedderburn in 1907). A far-reaching generalization of this is the Jacobson density theorem, cf. [[Associative rings and algebras|Associative rings and algebras]] and [[#References|[a1]]].

Latest revision as of 08:00, 6 June 2020


algebra of matrices

A subalgebra of the full matrix algebra $ F _ {n} $ of all $ ( n \times n) $- dimensional matrices over a field $ F $. The operations in $ F _ {n} $ are defined as follows:

$$ \lambda a = \| \lambda a _ {ij} \| ,\ \ a + b = \| a _ {ij} + b _ {ij} \| , $$

$$ ab = c = \| c _ {ij} \| ,\ c _ {ij} = \ \sum _ {\nu = 1 } ^ { n } a _ {i \nu } b _ {\nu j } $$

where $ \lambda \in F $, and $ a = \| a _ {ij} \| , b = \| b _ {ij} \| \in F _ {n} $. The algebra $ F _ {n} $ is isomorphic to the algebra of all endomorphisms of an $ n $- dimensional vector space over $ F $. The dimension of $ F _ {n} $ over $ F $ equals $ n ^ {2} $. Every associative algebra with an identity (cf. Associative rings and algebras) and of dimension over $ F $ at most $ n $ is isomorphic to some subalgebra of $ F _ {n} $. An associative algebra without an identity and with dimension over $ F $ less than $ n $ can also be isomorphically imbedded in $ F _ {n} $. By Wedderburn's theorem, the algebra $ F _ {n} $ is simple, i.e. it has only trivial two-sided ideals. The centre of the algebra $ F _ {n} $ consists of all scalar $ ( n \times n) $- dimensional matrices over $ F $. The group of invertible elements of $ F _ {n} $ is the general linear group $ \mathop{\rm GL} ( n, F ) $. Every automorphism $ h $ of $ F _ {n} $ is inner:

$$ h( x) = txt ^ {-} 1 ,\ \ x \in F _ {n} ,\ \ t \in \mathop{\rm GL} ( n, F ). $$

Every irreducible matrix algebra (cf. also Irreducible matrix group) is simple. If a matrix algebra $ A $ is absolutely reducible (for example, if the field $ F $ is algebraically closed), then $ A = F _ {n} $ for $ n > 1 $( Burnside's theorem). A matrix algebra is semi-simple if and only if it is completely reducible (cf. also Completely-reducible matrix group).

Up to conjugation, $ F _ {n} $ contains a unique maximal nilpotent subalgebra — the algebra of all upper-triangular matrices with zero diagonal entries. In $ F _ {n} $ there is an $ r $- dimensional commutative subalgebra if and only if

$$ r \leq \left [ \frac{n ^ {2} }{4} \right ] + 1 $$

(Schur's theorem). Over the complex field $ \mathbf C $ the set of conjugacy classes of maximal commutative subalgebras of $ \mathbf C _ {n} $ is finite for $ n < 6 $ and infinite for $ n > 6 $.

In $ F _ {n} $ one has the standard identity of degree $ 2n $:

$$ \sum _ {\sigma \in S _ {2 n } } ( \mathop{\rm sgn} \sigma ) x _ {\sigma ( 1) } \dots x _ {\sigma ( 2n) } = 0, $$

where $ S _ {2n} $ denotes the symmetric group and $ \mathop{\rm sgn} \sigma $ the sign of the permutation $ \sigma $, but no identity of lower degree (cf. Amitsur–Levitzki theorem).

References

[1] H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946) MR0000255 Zbl 1024.20502
[2] N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) MR0081264 Zbl 0073.02002
[3] I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) MR1535024 MR0227205 Zbl 0177.05801
[4] B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German) MR1541390 Zbl 1032.00002 Zbl 1032.00001 Zbl 0903.01009 Zbl 0781.12003 Zbl 0781.12002 Zbl 0724.12002 Zbl 0724.12001 Zbl 0569.01001 Zbl 0534.01001 Zbl 0997.00502 Zbl 0997.00501 Zbl 0316.22001 Zbl 0297.01014 Zbl 0221.12001 Zbl 0192.33002 Zbl 0137.25403 Zbl 0136.24505 Zbl 0087.25903 Zbl 0192.33001 Zbl 0067.00502
[5] D.A. Suprunenko, R.I. Tyshkevich, "Commutable matrices" , Minsk (1966) (In Russian)

Comments

A frequently used notation for $ F _ {n} $ is $ M _ {n} ( F ) $.

Wedderburn's theorem on the structure of semi-simple rings says that any semi-simple ring $ R $ is a finite direct product of full matrix rings $ M _ {n _ {i} } ( F _ {i} ) $ over skew-fields $ F _ {i} $, and conversely every ring of this form is semi-simple. Further, the $ F _ {i} $ and $ n _ {i} $ are uniquely determined by $ R $.

The Wedderburn–Artin theorem says that a right Artinian simple ring is a total matrix ring (E. Artin, 1928; proved for finite-dimensional algebras by J.H.M. Wedderburn in 1907). A far-reaching generalization of this is the Jacobson density theorem, cf. Associative rings and algebras and [a1].

References

[a1] P.M. Cohn, "Algebra" , 2 , Wiley (1977) pp. Sect. 10.2 MR0530404 Zbl 0341.00002
How to Cite This Entry:
Matrix algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_algebra&oldid=42498
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article