Difference between revisions of "Uniform convergence"
m (→Comments: link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | u0952301.png | ||
+ | $#A+1 = 100 n = 0 | ||
+ | $#C+1 = 100 : ~/encyclopedia/old_files/data/U095/U.0905230 Uniform convergence | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of a sequence of functions (mappings)'' | ''of a sequence of functions (mappings)'' | ||
− | A property of a sequence | + | A property of a sequence $ f _ {n} : X \rightarrow Y $, |
+ | where $ X $ | ||
+ | is an arbitrary set, $ Y $ | ||
+ | is a metric space, $ n = 1, 2 \dots $ | ||
+ | converging to a function (mapping) $ f: X \rightarrow Y $, | ||
+ | requiring that for every $ \epsilon > 0 $ | ||
+ | there is a number $ n _ \epsilon $( | ||
+ | independent of $ x $) | ||
+ | such that for all $ n > n _ \epsilon $ | ||
+ | and all $ x \in X $ | ||
+ | the inequality | ||
− | < | + | $$ |
+ | \rho ( f ( x), f _ {n} ( x)) < \epsilon | ||
+ | $$ | ||
holds. This is equivalent to | holds. This is equivalent to | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \sup _ {x \in X } \ | ||
+ | \rho ( f _ {n} ( x), f ( x)) = 0. | ||
+ | $$ | ||
− | In order that a sequence | + | In order that a sequence $ \{ f _ {n} \} $ |
+ | converges uniformly on a set $ X $ | ||
+ | to a function $ f $ | ||
+ | it is necessary and sufficient that there is a sequence of numbers $ \{ \alpha _ {n} \} $ | ||
+ | such that $ \lim\limits _ {n \rightarrow \infty } \alpha _ {n} = 0 $, | ||
+ | as well as a number $ n _ {0} $ | ||
+ | such that for $ n > n _ {0} $ | ||
+ | and all $ x \in X $ | ||
+ | the inequality | ||
− | + | $$ | |
+ | \rho ( f _ {n} ( x), f ( x)) \leq \alpha _ {n} $$ | ||
holds. | holds. | ||
− | Example. The sequence | + | Example. The sequence $ \{ f _ {n} ( x) \} = \{ x ^ {n} \} $, |
+ | $ n = 1, 2 \dots $ | ||
+ | converges uniformly on any interval $ [ 0, a] $, | ||
+ | $ 0 < a < 1 $, | ||
+ | but does not converge uniformly on $ [ 0, 1] $. | ||
A necessary and sufficient condition for uniform convergence that does not use the limit function is given by the [[Cauchy criteria|Cauchy criterion]] for uniform convergence. | A necessary and sufficient condition for uniform convergence that does not use the limit function is given by the [[Cauchy criteria|Cauchy criterion]] for uniform convergence. | ||
Line 21: | Line 62: | ||
==Properties of uniformly-convergent sequences.== | ==Properties of uniformly-convergent sequences.== | ||
+ | 1) If $ Y $ | ||
+ | is a normed linear space and two sequences of mappings $ f _ {n} : X \rightarrow Y $ | ||
+ | and $ g _ {n} : X \rightarrow Y $ | ||
+ | converge uniformly on $ X $, | ||
+ | then for any $ \lambda , \mu \in \mathbf C $ | ||
+ | the sequence $ \{ \lambda f _ {n} + \mu g _ {n} \} $ | ||
+ | also converges uniformly on $ X $. | ||
− | + | 2) If $ Y $ | |
+ | is a linear normed ring, if the sequence $ f _ {n} : X \rightarrow Y $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | is uniformly convergent on $ X $ | ||
+ | and if $ g: X \rightarrow Y $ | ||
+ | is a bounded mapping, then the sequence $ \{ gf _ {n} \} $ | ||
+ | also converges uniformly on $ X $. | ||
− | + | 3) If $ X $ | |
+ | is a topological space, $ Y $ | ||
+ | is a metric space and if a sequence of mappings $ f _ {n} : X \rightarrow Y $, | ||
+ | continuous at $ x _ {0} \in X $, | ||
+ | converges uniformly on $ X $ | ||
+ | to $ f: X \rightarrow Y $, | ||
+ | then $ f $ | ||
+ | is also continuous at $ x _ {0} $, | ||
+ | that is, | ||
− | + | $$ | |
+ | \lim\limits _ {x \rightarrow x _ {0} } \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | f _ {n} ( x) = \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | f _ {n} ( x _ {0} ) = \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \lim\limits _ {x \rightarrow x _ {0} } \ | ||
+ | f _ {n} ( x). | ||
+ | $$ | ||
− | + | The condition of uniform convergence of the sequence $ \{ f _ {n} \} $ | |
+ | on $ X $ | ||
+ | is essential in this result, in the sense that there are sequences of numerical functions, continuous on an interval, that converge at all points to a function that is not continuous on the interval in question. An example is $ f _ {n} ( x) = x ^ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | on $ [ 0, 1] $. | ||
+ | Uniform convergence of a sequence of continuous functions is not a necessary condition for continuity of the limit function. However, if $ X $ | ||
+ | is a compact set, $ Y $ | ||
+ | is the set of real numbers $ \mathbf R $ | ||
+ | and if all functions in a sequence of continuous functions $ f _ {n} : X \rightarrow \mathbf R $ | ||
+ | simultaneously increase or decrease at all points $ x \in X $ | ||
+ | and the sequence has a finite limit: | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } f _ {n} ( x) = f ( x), | ||
+ | $$ | ||
− | + | then in order that $ f $ | |
+ | be continuous on $ X $ | ||
+ | it is necessary and sufficient that $ \{ f _ {n} \} $ | ||
+ | converges uniformly on that set. Necessary, and simultaneously sufficient, conditions for the continuity of the limit of a sequence of continuous functions in general are given in terms of [[Quasi-uniform convergence|quasi-uniform convergence]] of the sequence. | ||
− | + | 4) If a sequence of Riemann- (Lebesgue-) integrable functions $ f _ {n} : [ a, b] \rightarrow \mathbf R $, | |
+ | $ n = 1, 2 \dots $ | ||
+ | converges uniformly on $ [ a, b] $ | ||
+ | to a function $ f: [ a, b] \rightarrow \mathbf R $, | ||
+ | then this function is also Riemann- (respectively, Lebesgue-) integrable, for any $ x \in [ a, b] $ | ||
+ | one has | ||
− | + | $$ \tag{* } | |
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \int\limits _ { a } ^ { x } f _ {n} ( t) dt = \ | ||
+ | \int\limits _ { a } ^ { x } f ( t) dt = \ | ||
+ | \int\limits _ { a } ^ { x } | ||
+ | \lim\limits _ {n \rightarrow \infty } f _ {n} ( t) dt, | ||
+ | $$ | ||
− | + | and the convergence of the sequence $ \{ \int _ {a} ^ {x} f _ {n} ( t) dt \} $ | |
+ | to $ \int _ {a} ^ {x} f ( t) dt $ | ||
+ | is uniform on $ [ a, b] $. | ||
+ | Formula (*) has been generalized to the case of a [[Stieltjes integral|Stieltjes integral]]. If, however, a sequence of integrable functions $ f _ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | on $ [ a, b] $ | ||
+ | only converges at each point of the interval to an integrable function $ f $, | ||
+ | then (*) need not hold. | ||
− | + | 5) If a sequence of continuously differentiable functions $ f _ {n} : [ a, b] \rightarrow \mathbf R $, | |
+ | $ n = 1, 2 \dots $ | ||
+ | on $ [ a, b] $ | ||
+ | converges at some point $ x _ {0} \in [ a, b] $ | ||
+ | and if the sequence of derivatives $ \{ df _ {n} /dx \} $ | ||
+ | converges uniformly on $ [ a, b] $, | ||
+ | then the sequence $ \{ f _ {n} \} $ | ||
+ | also converges uniformly on $ [ a, b] $, | ||
+ | its limit is a continuously differentiable function on the interval and | ||
− | + | $$ | |
+ | { | ||
+ | \frac{d}{dx } | ||
+ | } | ||
+ | \lim\limits _ {n \rightarrow \infty } f _ {n} ( x) = \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
− | + | \frac{df _ {n} ( x) }{dx } | |
+ | ,\ \ | ||
+ | a \leq x \leq b. | ||
+ | $$ | ||
− | Let | + | Let $ X $ |
+ | be a set and $ Y $ | ||
+ | a metric space. A family of functions (mappings) $ f _ \alpha : X \rightarrow Y $, | ||
+ | $ \alpha \in \mathfrak U $, | ||
+ | with $ \mathfrak U $ | ||
+ | a topological space, is said to be uniformly convergent as $ \alpha \rightarrow \alpha _ {0} \in \mathfrak U $ | ||
+ | to the function (mapping) $ f: X \rightarrow Y $ | ||
+ | if for every $ \epsilon > 0 $ | ||
+ | there is a neighbourhood $ U ( \alpha _ {0} ) $ | ||
+ | of $ \alpha _ {0} $ | ||
+ | such that for all $ \alpha \in U( \alpha _ {0} ) $ | ||
+ | and $ x \in X $ | ||
+ | the inequality | ||
− | < | + | $$ |
+ | \rho ( f( x), f _ \alpha ( x)) < \epsilon | ||
+ | $$ | ||
holds. | holds. | ||
Line 54: | Line 188: | ||
For uniformly-convergent families of functions there are properties similar to the above-mentioned properties of uniformly-convergent sequences of functions. | For uniformly-convergent families of functions there are properties similar to the above-mentioned properties of uniformly-convergent sequences of functions. | ||
− | The concept of uniform convergence of mappings can be generalized to the case when | + | The concept of uniform convergence of mappings can be generalized to the case when $ Y $ |
+ | is a [[Uniform space|uniform space]], in particular, when $ Y $ | ||
+ | is a topological group. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft. (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.L. Kelley, "General topology" , Springer (1975)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft. (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.L. Kelley, "General topology" , Springer (1975)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:27, 6 June 2020
of a sequence of functions (mappings)
A property of a sequence $ f _ {n} : X \rightarrow Y $, where $ X $ is an arbitrary set, $ Y $ is a metric space, $ n = 1, 2 \dots $ converging to a function (mapping) $ f: X \rightarrow Y $, requiring that for every $ \epsilon > 0 $ there is a number $ n _ \epsilon $( independent of $ x $) such that for all $ n > n _ \epsilon $ and all $ x \in X $ the inequality
$$ \rho ( f ( x), f _ {n} ( x)) < \epsilon $$
holds. This is equivalent to
$$ \lim\limits _ {n \rightarrow \infty } \ \sup _ {x \in X } \ \rho ( f _ {n} ( x), f ( x)) = 0. $$
In order that a sequence $ \{ f _ {n} \} $ converges uniformly on a set $ X $ to a function $ f $ it is necessary and sufficient that there is a sequence of numbers $ \{ \alpha _ {n} \} $ such that $ \lim\limits _ {n \rightarrow \infty } \alpha _ {n} = 0 $, as well as a number $ n _ {0} $ such that for $ n > n _ {0} $ and all $ x \in X $ the inequality
$$ \rho ( f _ {n} ( x), f ( x)) \leq \alpha _ {n} $$
holds.
Example. The sequence $ \{ f _ {n} ( x) \} = \{ x ^ {n} \} $, $ n = 1, 2 \dots $ converges uniformly on any interval $ [ 0, a] $, $ 0 < a < 1 $, but does not converge uniformly on $ [ 0, 1] $.
A necessary and sufficient condition for uniform convergence that does not use the limit function is given by the Cauchy criterion for uniform convergence.
Properties of uniformly-convergent sequences.
1) If $ Y $ is a normed linear space and two sequences of mappings $ f _ {n} : X \rightarrow Y $ and $ g _ {n} : X \rightarrow Y $ converge uniformly on $ X $, then for any $ \lambda , \mu \in \mathbf C $ the sequence $ \{ \lambda f _ {n} + \mu g _ {n} \} $ also converges uniformly on $ X $.
2) If $ Y $ is a linear normed ring, if the sequence $ f _ {n} : X \rightarrow Y $, $ n = 1, 2 \dots $ is uniformly convergent on $ X $ and if $ g: X \rightarrow Y $ is a bounded mapping, then the sequence $ \{ gf _ {n} \} $ also converges uniformly on $ X $.
3) If $ X $ is a topological space, $ Y $ is a metric space and if a sequence of mappings $ f _ {n} : X \rightarrow Y $, continuous at $ x _ {0} \in X $, converges uniformly on $ X $ to $ f: X \rightarrow Y $, then $ f $ is also continuous at $ x _ {0} $, that is,
$$ \lim\limits _ {x \rightarrow x _ {0} } \ \lim\limits _ {n \rightarrow \infty } \ f _ {n} ( x) = \ \lim\limits _ {n \rightarrow \infty } \ f _ {n} ( x _ {0} ) = \ \lim\limits _ {n \rightarrow \infty } \ \lim\limits _ {x \rightarrow x _ {0} } \ f _ {n} ( x). $$
The condition of uniform convergence of the sequence $ \{ f _ {n} \} $ on $ X $ is essential in this result, in the sense that there are sequences of numerical functions, continuous on an interval, that converge at all points to a function that is not continuous on the interval in question. An example is $ f _ {n} ( x) = x ^ {n} $, $ n = 1, 2 \dots $ on $ [ 0, 1] $. Uniform convergence of a sequence of continuous functions is not a necessary condition for continuity of the limit function. However, if $ X $ is a compact set, $ Y $ is the set of real numbers $ \mathbf R $ and if all functions in a sequence of continuous functions $ f _ {n} : X \rightarrow \mathbf R $ simultaneously increase or decrease at all points $ x \in X $ and the sequence has a finite limit:
$$ \lim\limits _ {n \rightarrow \infty } f _ {n} ( x) = f ( x), $$
then in order that $ f $ be continuous on $ X $ it is necessary and sufficient that $ \{ f _ {n} \} $ converges uniformly on that set. Necessary, and simultaneously sufficient, conditions for the continuity of the limit of a sequence of continuous functions in general are given in terms of quasi-uniform convergence of the sequence.
4) If a sequence of Riemann- (Lebesgue-) integrable functions $ f _ {n} : [ a, b] \rightarrow \mathbf R $, $ n = 1, 2 \dots $ converges uniformly on $ [ a, b] $ to a function $ f: [ a, b] \rightarrow \mathbf R $, then this function is also Riemann- (respectively, Lebesgue-) integrable, for any $ x \in [ a, b] $ one has
$$ \tag{* } \lim\limits _ {n \rightarrow \infty } \ \int\limits _ { a } ^ { x } f _ {n} ( t) dt = \ \int\limits _ { a } ^ { x } f ( t) dt = \ \int\limits _ { a } ^ { x } \lim\limits _ {n \rightarrow \infty } f _ {n} ( t) dt, $$
and the convergence of the sequence $ \{ \int _ {a} ^ {x} f _ {n} ( t) dt \} $ to $ \int _ {a} ^ {x} f ( t) dt $ is uniform on $ [ a, b] $. Formula (*) has been generalized to the case of a Stieltjes integral. If, however, a sequence of integrable functions $ f _ {n} $, $ n = 1, 2 \dots $ on $ [ a, b] $ only converges at each point of the interval to an integrable function $ f $, then (*) need not hold.
5) If a sequence of continuously differentiable functions $ f _ {n} : [ a, b] \rightarrow \mathbf R $, $ n = 1, 2 \dots $ on $ [ a, b] $ converges at some point $ x _ {0} \in [ a, b] $ and if the sequence of derivatives $ \{ df _ {n} /dx \} $ converges uniformly on $ [ a, b] $, then the sequence $ \{ f _ {n} \} $ also converges uniformly on $ [ a, b] $, its limit is a continuously differentiable function on the interval and
$$ { \frac{d}{dx } } \lim\limits _ {n \rightarrow \infty } f _ {n} ( x) = \ \lim\limits _ {n \rightarrow \infty } \ \frac{df _ {n} ( x) }{dx } ,\ \ a \leq x \leq b. $$
Let $ X $ be a set and $ Y $ a metric space. A family of functions (mappings) $ f _ \alpha : X \rightarrow Y $, $ \alpha \in \mathfrak U $, with $ \mathfrak U $ a topological space, is said to be uniformly convergent as $ \alpha \rightarrow \alpha _ {0} \in \mathfrak U $ to the function (mapping) $ f: X \rightarrow Y $ if for every $ \epsilon > 0 $ there is a neighbourhood $ U ( \alpha _ {0} ) $ of $ \alpha _ {0} $ such that for all $ \alpha \in U( \alpha _ {0} ) $ and $ x \in X $ the inequality
$$ \rho ( f( x), f _ \alpha ( x)) < \epsilon $$
holds.
For uniformly-convergent families of functions there are properties similar to the above-mentioned properties of uniformly-convergent sequences of functions.
The concept of uniform convergence of mappings can be generalized to the case when $ Y $ is a uniform space, in particular, when $ Y $ is a topological group.
References
[1] | P.S. Aleksandrov, "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft. (1984) (Translated from Russian) |
[2] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[3] | J.L. Kelley, "General topology" , Springer (1975) |
Comments
The theorem that a monotone sequence of continuous functions converges uniformly to its pointwise limit if this limit is continuous, is known as Dini's theorem.
References
[a1] | R. Engelking, "General topology" , Heldermann (1989) |
[a2] | W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) pp. 75–78 |
Uniform convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Uniform_convergence&oldid=40134