Difference between revisions of "Symmetric group"
(→Comments: seemed incorrect, see talk page) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0916701.png | ||
+ | $#A+1 = 100 n = 2 | ||
+ | $#C+1 = 100 : ~/encyclopedia/old_files/data/S091/S.0901670 Symmetric group | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The group of all permutations (self-bijections) of a set $ X $ | |
+ | with the operation of composition (see [[Permutation group|Permutation group]]). The symmetric group on a set $ X $ | ||
+ | is denoted by $ S ( X) $. | ||
+ | For equipotent $ X $ | ||
+ | and $ X ^ \prime $ | ||
+ | the groups $ S ( X) $ | ||
+ | and $ S ( X ^ \prime ) $ | ||
+ | are isomorphic. The symmetric group of a finite set $ X = \{ 1 \dots n \} $ | ||
+ | is denoted by $ S _ {n} $. | ||
+ | Every abstract group is isomorphic to a subgroup of the symmetric group $ S ( X) $ | ||
+ | of some set $ X $( | ||
+ | Cayley's theorem). | ||
− | + | Let $ X $ | |
+ | be a finite set. Every permutation $ \pi $ | ||
+ | on $ X $ | ||
+ | can be uniquely described as a product of disjoint cycles (the (disjoint) cycle decomposition of a permutation); the sequence of integers | ||
− | + | $$ | |
+ | z ( \pi ) = ( a _ {1} \dots a _ {n} ), | ||
+ | $$ | ||
− | + | where $ a _ {i} $ | |
+ | is the number of cycles of length $ i $ | ||
+ | of $ \pi $, | ||
+ | is called the cycle type (or cycle index) of $ \pi $. | ||
+ | Two permutations $ \pi $ | ||
+ | and $ \pi ^ \prime $ | ||
+ | are conjugate in $ S _ {n} $ | ||
+ | if and only if they have the same cycle type. Permutations with cycle type | ||
− | + | $$ | |
+ | \{ n - 2, 1, 0 \dots 0 \} | ||
+ | $$ | ||
− | + | are called transpositions; they form a system of generators for $ S _ {n} $. | |
+ | The set of transpositions $ \Sigma = \{ ( i, i + 1) : i = 1 \dots n - 1 \} $ | ||
+ | is a minimal set of generators for $ S _ {n} $. | ||
+ | In general, a set $ \Delta = \{ ( i _ {k} , j _ {k} ) : i _ {k} \neq j _ {k} \} $ | ||
+ | generates $ S _ {n} $ | ||
+ | if the graph with $ X $ | ||
+ | as set of vertices and the pairs $ ( i _ {k} , j _ {k} ) $ | ||
+ | as edges is a [[Tree|tree]] [[#References|[2]]]. The number of such generating sets is $ n ^ {n - 2 } $. | ||
− | + | The [[Alternating group|alternating group]] $ A _ {n} $ | |
+ | is a normal subgroup of $ S _ {n} $. | ||
+ | If $ n \neq 4 $, | ||
+ | $ A _ {n} $ | ||
+ | is the unique non-trivial proper normal subgroup, and $ S _ {4} $ | ||
+ | contains only one other non-trivial normal subgroup — the Klein four-group: $ K _ {4} = \{ 1, ( 1 2)( 3, 4), ( 1 3)( 2 4), ( 1 4) ( 2 3) \} $. | ||
+ | For $ n \leq 4 $ | ||
+ | the group $ S _ {n} $ | ||
+ | is solvable, but for $ n \geq 5 $ | ||
+ | it is not solvable and $ A _ {n} $ | ||
+ | is a simple non-Abelian group. Hölder's theorem: For $ n \neq 2, 6 $, | ||
+ | the group $ S _ {n} $ | ||
+ | is complete (see [[Complete group|Complete group]]). The group $ S _ {2} $ | ||
+ | is commutative, and $ S _ {6} $ | ||
+ | has an [[outer automorphism]] of order 2. | ||
+ | |||
+ | All maximal intransitive and imprimitive subgroups in $ S _ {n} $ | ||
+ | are known. For each partition $ n = m _ {1} + m _ {2} $, | ||
+ | $ m _ {1} \neq m _ {2} $, | ||
+ | the only maximal intransitive subgroups in $ S _ {n} $ | ||
+ | are the subgroups $ S _ {m _ {1} } \times S _ {m _ {2} } $. | ||
+ | The only transitive imprimitive maximal subgroups in $ S _ {n} $ | ||
+ | are the wreath products (cf. [[Wreath product|Wreath product]]) of $ S _ {m _ {1} } $ | ||
+ | with $ S _ {m _ {2} } $( | ||
+ | for every decomposition $ n = m _ {1} m _ {2} $). | ||
+ | The primitive maximal subgroups in $ S _ {n} $ | ||
+ | have not yet been described (1992), but certain infinite series of them are known. For example, $ S _ {n} $ | ||
+ | acts naturally on the set $ B _ {n} ^ {m} $ | ||
+ | of all subsets of $ m $ | ||
+ | elements of $ \{ 1 \dots n \} $; | ||
+ | for $ n \neq 2m $ | ||
+ | this determines a primitive group of permutations of $ B _ {n} ^ {m} $. | ||
+ | It is maximal in $ S ( B _ {n} ^ {m} ) $ | ||
+ | if $ ( m, n) \neq ( 2, 6) $, | ||
+ | $ ( 2, 8) $, | ||
+ | $ ( 3, 10) $, | ||
+ | $ ( 4, 12) $, | ||
+ | $ ( m, 2m) $, | ||
+ | $ ( m, 2m + 1) $( | ||
+ | see [[#References|[1]]]). Another series is obtained by considering the group $ \Gamma L _ {n} ( q) $ | ||
+ | of semi-linear transformations of the $ n $- | ||
+ | dimensional vector space over the finite field of $ q $ | ||
+ | elements. This group defines a primitive group of permutations of the [[Grassmann manifold|Grassmann manifold]] $ G _ {n,m} ( q) $, | ||
+ | $ 1 \leq m \leq n - 1 $, | ||
+ | which is maximal in $ S ( G _ {n,m} ( q)) $ | ||
+ | for $ n \geq 3 $. | ||
+ | |||
+ | Let $ X $ | ||
+ | be an infinite set. The group of all permutations of $ X $ | ||
+ | that move only a finite number of elements of $ X $ | ||
+ | is called the finitary, or restricted, symmetric group on $ X $, | ||
+ | and is denoted by $ \mathop{\rm SF} ( X) $; | ||
+ | its subgroup of even permutations is called the finite, or restricted, alternating group on $ X $, | ||
+ | and is denoted by $ \mathop{\rm AF} ( X) $. | ||
+ | The subgroups $ \mathop{\rm SF} ( X) $ | ||
+ | and $ \mathop{\rm AF} ( X) $ | ||
+ | are normal in $ S ( X) $. | ||
+ | More generally, let $ \alpha $ | ||
+ | be the cardinality of $ X $ | ||
+ | and let $ \beta \leq \alpha $ | ||
+ | be an infinite cardinal; the set of permutations of $ X $ | ||
+ | which move at most $ \beta $ | ||
+ | elements of $ X $ | ||
+ | is a subgroup of $ S ( X) $, | ||
+ | denoted by $ S _ \beta ( X) $. | ||
+ | Along with $ \mathop{\rm SF} ( X) $ | ||
+ | and $ \mathop{\rm AF} ( X) $, | ||
+ | the groups $ S _ \beta ( X) $ | ||
+ | are normal subgroups in $ S ( X) $ | ||
+ | for all $ \beta \leq \alpha $, | ||
+ | and in fact there are no other non-trivial normal subgroups in $ S ( X) $( | ||
+ | the Schreier–Ulam–Baer theorem, see [[#References|[3]]]). | ||
See also the references to [[Permutation of a set|Permutation of a set]]. | See also the references to [[Permutation of a set|Permutation of a set]]. | ||
Line 21: | Line 132: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Kaluzhnin, M.Kh. Klin, "On certain maximal subgroups of symmetric and alternating groups" ''Math. USSR Sb.'' , '''16''' : 1 (1972) pp. 95–123 ''Mat. Sb.'' , '''87''' : 1 (1972) pp. 91–121</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Ore, "Theory of graphs" , Amer. Math. Soc. (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Ustimenko-Bakumovskii, "Maximality of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s091670100.png" /> acting on subspaces of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s091670101.png" />" ''Soviet Math. Dokl.'' , '''19''' : 3 (1978) pp. 769–772 ''Dokl. Akad. Nauk SSSR'' , '''240''' : 6 (1978) pp. 1305–1308</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Kaluzhnin, M.Kh. Klin, "On certain maximal subgroups of symmetric and alternating groups" ''Math. USSR Sb.'' , '''16''' : 1 (1972) pp. 95–123 ''Mat. Sb.'' , '''87''' : 1 (1972) pp. 91–121</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Ore, "Theory of graphs" , Amer. Math. Soc. (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Ustimenko-Bakumovskii, "Maximality of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s091670100.png" /> acting on subspaces of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s091670101.png" />" ''Soviet Math. Dokl.'' , '''19''' : 3 (1978) pp. 769–772 ''Dokl. Akad. Nauk SSSR'' , '''240''' : 6 (1978) pp. 1305–1308</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | See also [[#References|[a1]]] for a result on the structure of subgroups of | + | See also [[#References|[a1]]] for a result on the structure of subgroups of $ S _ {n} $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.M. Aschbacher, L.L. Scott, "Maximal subgroups of finite groups" ''J. Algebra'' (1985) pp. 44–80</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Wielandt, "Finite permutation groups" , Acad. Press (1964) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Passman, "Permutation groups" , Benjamin (1968)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.M. Aschbacher, L.L. Scott, "Maximal subgroups of finite groups" ''J. Algebra'' (1985) pp. 44–80</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Wielandt, "Finite permutation groups" , Acad. Press (1964) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Passman, "Permutation groups" , Benjamin (1968)</TD></TR></table> |
Latest revision as of 08:24, 6 June 2020
The group of all permutations (self-bijections) of a set $ X $
with the operation of composition (see Permutation group). The symmetric group on a set $ X $
is denoted by $ S ( X) $.
For equipotent $ X $
and $ X ^ \prime $
the groups $ S ( X) $
and $ S ( X ^ \prime ) $
are isomorphic. The symmetric group of a finite set $ X = \{ 1 \dots n \} $
is denoted by $ S _ {n} $.
Every abstract group is isomorphic to a subgroup of the symmetric group $ S ( X) $
of some set $ X $(
Cayley's theorem).
Let $ X $ be a finite set. Every permutation $ \pi $ on $ X $ can be uniquely described as a product of disjoint cycles (the (disjoint) cycle decomposition of a permutation); the sequence of integers
$$ z ( \pi ) = ( a _ {1} \dots a _ {n} ), $$
where $ a _ {i} $ is the number of cycles of length $ i $ of $ \pi $, is called the cycle type (or cycle index) of $ \pi $. Two permutations $ \pi $ and $ \pi ^ \prime $ are conjugate in $ S _ {n} $ if and only if they have the same cycle type. Permutations with cycle type
$$ \{ n - 2, 1, 0 \dots 0 \} $$
are called transpositions; they form a system of generators for $ S _ {n} $. The set of transpositions $ \Sigma = \{ ( i, i + 1) : i = 1 \dots n - 1 \} $ is a minimal set of generators for $ S _ {n} $. In general, a set $ \Delta = \{ ( i _ {k} , j _ {k} ) : i _ {k} \neq j _ {k} \} $ generates $ S _ {n} $ if the graph with $ X $ as set of vertices and the pairs $ ( i _ {k} , j _ {k} ) $ as edges is a tree [2]. The number of such generating sets is $ n ^ {n - 2 } $.
The alternating group $ A _ {n} $ is a normal subgroup of $ S _ {n} $. If $ n \neq 4 $, $ A _ {n} $ is the unique non-trivial proper normal subgroup, and $ S _ {4} $ contains only one other non-trivial normal subgroup — the Klein four-group: $ K _ {4} = \{ 1, ( 1 2)( 3, 4), ( 1 3)( 2 4), ( 1 4) ( 2 3) \} $. For $ n \leq 4 $ the group $ S _ {n} $ is solvable, but for $ n \geq 5 $ it is not solvable and $ A _ {n} $ is a simple non-Abelian group. Hölder's theorem: For $ n \neq 2, 6 $, the group $ S _ {n} $ is complete (see Complete group). The group $ S _ {2} $ is commutative, and $ S _ {6} $ has an outer automorphism of order 2.
All maximal intransitive and imprimitive subgroups in $ S _ {n} $ are known. For each partition $ n = m _ {1} + m _ {2} $, $ m _ {1} \neq m _ {2} $, the only maximal intransitive subgroups in $ S _ {n} $ are the subgroups $ S _ {m _ {1} } \times S _ {m _ {2} } $. The only transitive imprimitive maximal subgroups in $ S _ {n} $ are the wreath products (cf. Wreath product) of $ S _ {m _ {1} } $ with $ S _ {m _ {2} } $( for every decomposition $ n = m _ {1} m _ {2} $). The primitive maximal subgroups in $ S _ {n} $ have not yet been described (1992), but certain infinite series of them are known. For example, $ S _ {n} $ acts naturally on the set $ B _ {n} ^ {m} $ of all subsets of $ m $ elements of $ \{ 1 \dots n \} $; for $ n \neq 2m $ this determines a primitive group of permutations of $ B _ {n} ^ {m} $. It is maximal in $ S ( B _ {n} ^ {m} ) $ if $ ( m, n) \neq ( 2, 6) $, $ ( 2, 8) $, $ ( 3, 10) $, $ ( 4, 12) $, $ ( m, 2m) $, $ ( m, 2m + 1) $( see [1]). Another series is obtained by considering the group $ \Gamma L _ {n} ( q) $ of semi-linear transformations of the $ n $- dimensional vector space over the finite field of $ q $ elements. This group defines a primitive group of permutations of the Grassmann manifold $ G _ {n,m} ( q) $, $ 1 \leq m \leq n - 1 $, which is maximal in $ S ( G _ {n,m} ( q)) $ for $ n \geq 3 $.
Let $ X $ be an infinite set. The group of all permutations of $ X $ that move only a finite number of elements of $ X $ is called the finitary, or restricted, symmetric group on $ X $, and is denoted by $ \mathop{\rm SF} ( X) $; its subgroup of even permutations is called the finite, or restricted, alternating group on $ X $, and is denoted by $ \mathop{\rm AF} ( X) $. The subgroups $ \mathop{\rm SF} ( X) $ and $ \mathop{\rm AF} ( X) $ are normal in $ S ( X) $. More generally, let $ \alpha $ be the cardinality of $ X $ and let $ \beta \leq \alpha $ be an infinite cardinal; the set of permutations of $ X $ which move at most $ \beta $ elements of $ X $ is a subgroup of $ S ( X) $, denoted by $ S _ \beta ( X) $. Along with $ \mathop{\rm SF} ( X) $ and $ \mathop{\rm AF} ( X) $, the groups $ S _ \beta ( X) $ are normal subgroups in $ S ( X) $ for all $ \beta \leq \alpha $, and in fact there are no other non-trivial normal subgroups in $ S ( X) $( the Schreier–Ulam–Baer theorem, see [3]).
See also the references to Permutation of a set.
References
[1] | L.A. Kaluzhnin, M.Kh. Klin, "On certain maximal subgroups of symmetric and alternating groups" Math. USSR Sb. , 16 : 1 (1972) pp. 95–123 Mat. Sb. , 87 : 1 (1972) pp. 91–121 |
[2] | O. Ore, "Theory of graphs" , Amer. Math. Soc. (1962) |
[3] | B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972) |
[4] | V.A. Ustimenko-Bakumovskii, "Maximality of the group acting on subspaces of dimension " Soviet Math. Dokl. , 19 : 3 (1978) pp. 769–772 Dokl. Akad. Nauk SSSR , 240 : 6 (1978) pp. 1305–1308 |
Comments
See also [a1] for a result on the structure of subgroups of $ S _ {n} $.
References
[a1] | I.M. Aschbacher, L.L. Scott, "Maximal subgroups of finite groups" J. Algebra (1985) pp. 44–80 |
[a2] | H. Wielandt, "Finite permutation groups" , Acad. Press (1964) (Translated from German) |
[a3] | D. Passman, "Permutation groups" , Benjamin (1968) |
Symmetric group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_group&oldid=35368