Difference between revisions of "Monotone function"
(related concepts) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0648301.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/M064/M.0604830 Monotone function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | A function of one variable, defined on a subset of the real numbers, whose increment $ \Delta f ( x) = f ( x ^ \prime ) - f ( x) $, | ||
+ | for $ \Delta x = x ^ \prime - x > 0 $, | ||
+ | does not change sign, that is, is either always negative or always positive. If $ \Delta f ( x) $ | ||
+ | is strictly greater (less) than zero when $ \Delta x > 0 $, | ||
+ | then the function is called strictly monotone (see [[Increasing function|Increasing function]]; [[Decreasing function|Decreasing function]]). The various types of monotone functions are represented in the following table. | ||
+ | |||
+ | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \Delta f ( x) \geq 0 $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">Increasing (non-decreasing)</td> <td colname="3" style="background-color:white;" colspan="1"> | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | ||
− | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> | + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \Delta f ( x) \leq 0 $ |
+ | </td> <td colname="2" style="background-color:white;" colspan="1">Decreasing (non-increasing)</td> <td colname="3" style="background-color:white;" colspan="1"> | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | ||
− | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> | + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \Delta f ( x) > 0 $ |
+ | </td> <td colname="2" style="background-color:white;" colspan="1">Strictly increasing</td> <td colname="3" style="background-color:white;" colspan="1"> | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | ||
− | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">< | + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \Delta f ( x) < 0 $ |
+ | </td> <td colname="2" style="background-color:white;" colspan="1">Strictly decreasing</td> <td colname="3" style="background-color:white;" colspan="1"> | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" /> | ||
Line 21: | Line 41: | ||
</td></tr> </table> | </td></tr> </table> | ||
− | If at each point of an interval | + | If at each point of an interval $ f $ |
+ | has a derivative that does not change sign (respectively, is of constant sign), then $ f $ | ||
+ | is monotone (strictly monotone) on this interval. | ||
− | The idea of a monotone function can be generalized to functions of various classes. For example, a function | + | The idea of a monotone function can be generalized to functions of various classes. For example, a function $ f ( x _ {1} \dots x _ {n} ) $ |
+ | defined on $ \mathbf R ^ {n} $ | ||
+ | is called monotone if the condition $ x _ {1} \leq x _ {1} ^ \prime \dots x _ {n} \leq x _ {n} ^ \prime $ | ||
+ | implies that everywhere either $ f ( x _ {1} \dots x _ {n} ) \leq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ | ||
+ | or $ f ( x _ {1} \dots x _ {n} ) \geq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ | ||
+ | everywhere. A monotone function in the [[Algebra of logic|algebra of logic]] is defined similarly. | ||
− | A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let | + | A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let $ f $ |
+ | be defined on the $ n $- | ||
+ | dimensional closed cube $ Q ^ {n} $, | ||
+ | let $ x _ {0} \in Q ^ {n} $ | ||
+ | and let $ E _ {t} = \{ {x } : {f ( x) = t, x \in Q ^ {n} } \} $ | ||
+ | be a [[Level set|level set]] of $ f $. | ||
+ | The function $ f $ | ||
+ | is called increasing (respectively, decreasing) at $ x _ {0} $ | ||
+ | if for any $ t $ | ||
+ | and any $ x ^ \prime \in Q ^ {n} \setminus E _ {t} $ | ||
+ | not separated in $ Q ^ {n} $ | ||
+ | by $ E _ {t} $ | ||
+ | from $ x _ {0} $, | ||
+ | the relation $ f ( x ^ \prime ) < t $( | ||
+ | respectively, $ f ( x ^ \prime ) > t $) | ||
+ | holds, and for any $ x ^ {\prime\prime} \in Q ^ {n} \setminus E _ {t} $ | ||
+ | that is separated in $ Q ^ {n} $ | ||
+ | by $ E _ {t} $ | ||
+ | from $ x _ {0} $, | ||
+ | the relation $ f ( x ^ {\prime\prime} ) > t $( | ||
+ | respectively, $ f ( x ^ {\prime\prime} ) < t $) | ||
+ | holds. A function that is increasing or decreasing at some point is called monotone at that point. | ||
====Comments==== | ====Comments==== | ||
For the concept in [[non-linear functional analysis]], see [[Monotone operator]]. For the concept in general [[partially ordered set]]s, see [[Monotone mapping]]. | For the concept in [[non-linear functional analysis]], see [[Monotone operator]]. For the concept in general [[partially ordered set]]s, see [[Monotone mapping]]. |
Latest revision as of 08:01, 6 June 2020
A function of one variable, defined on a subset of the real numbers, whose increment $ \Delta f ( x) = f ( x ^ \prime ) - f ( x) $,
for $ \Delta x = x ^ \prime - x > 0 $,
does not change sign, that is, is either always negative or always positive. If $ \Delta f ( x) $
is strictly greater (less) than zero when $ \Delta x > 0 $,
then the function is called strictly monotone (see Increasing function; Decreasing function). The various types of monotone functions are represented in the following table.
<tbody> </tbody>
|
If at each point of an interval $ f $ has a derivative that does not change sign (respectively, is of constant sign), then $ f $ is monotone (strictly monotone) on this interval.
The idea of a monotone function can be generalized to functions of various classes. For example, a function $ f ( x _ {1} \dots x _ {n} ) $ defined on $ \mathbf R ^ {n} $ is called monotone if the condition $ x _ {1} \leq x _ {1} ^ \prime \dots x _ {n} \leq x _ {n} ^ \prime $ implies that everywhere either $ f ( x _ {1} \dots x _ {n} ) \leq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ or $ f ( x _ {1} \dots x _ {n} ) \geq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ everywhere. A monotone function in the algebra of logic is defined similarly.
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let $ f $ be defined on the $ n $- dimensional closed cube $ Q ^ {n} $, let $ x _ {0} \in Q ^ {n} $ and let $ E _ {t} = \{ {x } : {f ( x) = t, x \in Q ^ {n} } \} $ be a level set of $ f $. The function $ f $ is called increasing (respectively, decreasing) at $ x _ {0} $ if for any $ t $ and any $ x ^ \prime \in Q ^ {n} \setminus E _ {t} $ not separated in $ Q ^ {n} $ by $ E _ {t} $ from $ x _ {0} $, the relation $ f ( x ^ \prime ) < t $( respectively, $ f ( x ^ \prime ) > t $) holds, and for any $ x ^ {\prime\prime} \in Q ^ {n} \setminus E _ {t} $ that is separated in $ Q ^ {n} $ by $ E _ {t} $ from $ x _ {0} $, the relation $ f ( x ^ {\prime\prime} ) > t $( respectively, $ f ( x ^ {\prime\prime} ) < t $) holds. A function that is increasing or decreasing at some point is called monotone at that point.
Comments
For the concept in non-linear functional analysis, see Monotone operator. For the concept in general partially ordered sets, see Monotone mapping.
Monotone function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monotone_function&oldid=34526