Namespaces
Variants
Actions

Difference between revisions of "Defective matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(Comment: Non-defective iff diagonalisable, cite Trefethen & Bau (1997))
Line 4: Line 4:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.M. Young,  R.T. Gregory,  "A survey of numerical mathematics" , '''2''' , Dover, reprint  (1988)  pp. 741–743</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.M. Young,  R.T. Gregory,  "A survey of numerical mathematics" , '''2''' , Dover, reprint  (1988)  pp. 741–743</TD></TR></table>
 +
 +
====Comment====
 +
A complex matrix $A$ is non-defective if and only if it is [[Similar matrices|similar]] to a [[diagonal matrix]]: $\Delta = P A P^{-1}$.
 +
 +
====References====
 +
* Lloyd N. Trefethen, David Bau III, ''Numerical Linear Algebra'' SIAM (1997) ISBN 0898713617
 +
 +
[[Category:Special matrices]]
 +
[[Category:Numerical analysis and scientific computing]]

Revision as of 20:42, 17 October 2014

A matrix $A\in\mathbf C^{n\times n}$ is called non-defective if it has a set of $n$ independent eigenvectors (cf. Eigen vector). Otherwise it is called defective. The notion is of particular importance in numerical linear algebra.

References

[a1] D.M. Young, R.T. Gregory, "A survey of numerical mathematics" , 2 , Dover, reprint (1988) pp. 741–743

Comment

A complex matrix $A$ is non-defective if and only if it is similar to a diagonal matrix: $\Delta = P A P^{-1}$.

References

  • Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra SIAM (1997) ISBN 0898713617
How to Cite This Entry:
Defective matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defective_matrix&oldid=33747
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article