Difference between revisions of "Tikhonov space"
(Category:General topology) |
(MSC|54D15) |
||
Line 1: | Line 1: | ||
− | {{TEX|done}} | + | {{TEX|done}}{{MSC|54D15}} |
− | A [[topological space]] | + | |
+ | A [[topological space]] satisfying the [[separation axiom]] that every finite set is closed and such that for every closed set $P$ and any point $x$ not in $P$ there exists a continuous real-valued function $f$ on the whole space taking the value 0 at $x$ and the value 1 at every point of $P$. The class of Tikhonov spaces coincides with the class of completely-regular $T_1$-spaces (cf. [[Completely-regular space]]). In a Tikhonov space any two distinct points can be separated by disjoint neighbourhoods (in other words, the [[Hausdorff space|Hausdorff separation axiom]] is satisfied), but not every Tikhonov space is normal (cf. [[Normal space]]). A.N. Tikhonov (1929) characterized Tikhonov spaces as subspaces of compact Hausdorff spaces. | ||
====References==== | ====References==== | ||
Line 7: | Line 8: | ||
<TR><TD valign="top">[2]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian)</TD></TR> | <TR><TD valign="top">[2]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian)</TD></TR> | ||
</table> | </table> | ||
− | |||
− |
Revision as of 11:57, 22 January 2021
2020 Mathematics Subject Classification: Primary: 54D15 [MSN][ZBL]
A topological space satisfying the separation axiom that every finite set is closed and such that for every closed set $P$ and any point $x$ not in $P$ there exists a continuous real-valued function $f$ on the whole space taking the value 0 at $x$ and the value 1 at every point of $P$. The class of Tikhonov spaces coincides with the class of completely-regular $T_1$-spaces (cf. Completely-regular space). In a Tikhonov space any two distinct points can be separated by disjoint neighbourhoods (in other words, the Hausdorff separation axiom is satisfied), but not every Tikhonov space is normal (cf. Normal space). A.N. Tikhonov (1929) characterized Tikhonov spaces as subspaces of compact Hausdorff spaces.
References
[1] | P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
[2] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) |
Tikhonov space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tikhonov_space&oldid=33720