Difference between revisions of "Perfectly-normal space"
From Encyclopedia of Mathematics
(details) |
|||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A [[ | + | A [[normal space]] in which every closed subset is a $G_\delta$-set (cf. [[Set of type F sigma(G delta)|Set of type $F_\sigma$ ($G_\delta$)]]). |
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Čech, "Topological spaces" , Interscience (1966) pp. 532</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Čech, "Topological spaces" , Interscience (1966) pp. 532</TD></TR> | ||
+ | </table> | ||
[[Category:General topology]] | [[Category:General topology]] |
Latest revision as of 09:30, 16 April 2023
A normal space in which every closed subset is a $G_\delta$-set (cf. Set of type $F_\sigma$ ($G_\delta$)).
References
[a1] | E. Čech, "Topological spaces" , Interscience (1966) pp. 532 |
How to Cite This Entry:
Perfectly-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfectly-normal_space&oldid=33670
Perfectly-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfectly-normal_space&oldid=33670