Namespaces
Variants
Actions

Difference between revisions of "Defining system of neighbourhoods"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(Category:General topology)
 
Line 13: Line 13:
 
====Comments====
 
====Comments====
 
A defining system of neighbourhoods is also called a local base or a neighbourhood base.
 
A defining system of neighbourhoods is also called a local base or a neighbourhood base.
 +
 +
[[Category:General topology]]

Latest revision as of 21:28, 8 November 2014

of a set $A$ in a topological space $X$

Any family $\xi$ of subsets of the space $X$ subject to the following two conditions: a) for every $O\in\xi$ there is an open set $V$ in $X$ such that $O\supset V\supset A$; b) for any open set $W$ in $X$ containing $A$ there is an element $U$ of the family $\xi$ contained in $W$.

It is sometimes further supposed that all elements of the family $\xi$ are open sets. A defining system of neighbourhoods of a one-point set $\{x\}$ in a topological space $X$ is called a defining system of neighbourhoods of the point $x\in X$ in $X$.

References

[1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian)


Comments

A defining system of neighbourhoods is also called a local base or a neighbourhood base.

How to Cite This Entry:
Defining system of neighbourhoods. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defining_system_of_neighbourhoods&oldid=32509
This article was adapted from an original article by A.V. Arkhangel'skii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article