Defining system of neighbourhoods
From Encyclopedia of Mathematics
				
								
				
				
																
				
				
								
				of a set $A$ in a topological space $X$
Any family $\xi$ of subsets of the space $X$ subject to the following two conditions: a) for every $O\in\xi$ there is an open set $V$ in $X$ such that $O\supset V\supset A$; b) for any open set $W$ in $X$ containing $A$ there is an element $U$ of the family $\xi$ contained in $W$.
It is sometimes further supposed that all elements of the family $\xi$ are open sets. A defining system of neighbourhoods of a one-point set $\{x\}$ in a topological space $X$ is called a defining system of neighbourhoods of the point $x\in X$ in $X$.
References
| [1] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) | 
Comments
A defining system of neighbourhoods is also called a local base or a neighbourhood base.
How to Cite This Entry:
Defining system of neighbourhoods. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defining_system_of_neighbourhoods&oldid=34382
Defining system of neighbourhoods. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defining_system_of_neighbourhoods&oldid=34382
This article was adapted from an original article by A.V. Arkhangel'skii (originator),  which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article