Difference between revisions of "Twins"
From Encyclopedia of Mathematics
m (TeX encoding is done) |
(Category:Number theory) |
||
Line 10: | Line 10: | ||
====Comments==== | ====Comments==== | ||
It is known that the infinite sum $\sum 1/p$ over all $p$ belonging to a twin is finite, see [[Brun sieve|Brun sieve]]; [[Brun theorem|Brun theorem]]. | It is known that the infinite sum $\sum 1/p$ over all $p$ belonging to a twin is finite, see [[Brun sieve|Brun sieve]]; [[Brun theorem|Brun theorem]]. | ||
+ | |||
+ | [[Category:Number theory]] |
Revision as of 20:18, 14 October 2014
prime twins
Two primes the difference between which is 2. Generalized twins are pairs of successive primes with difference $2m$, where $m$ is a given natural number. Examples of twins are readily found on consulting the table of prime numbers. Such are, e.g., 3 and 5, 5 and 7, 11 and 13, 17 and 19. Generalized twins — for $m=2$, for example — include 13 and 17, 19 and 23, 43 and 47. It is not yet (1992) known if the set of twins, and even the set of generalized twins for any given $m$, is infinite. This is the twin problem.
References
[1] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
[2] | E. Trost, "Primzahlen" , Birkhäuser (1953) |
Comments
It is known that the infinite sum $\sum 1/p$ over all $p$ belonging to a twin is finite, see Brun sieve; Brun theorem.
How to Cite This Entry:
Twins. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Twins&oldid=29162
Twins. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Twins&oldid=29162
This article was adapted from an original article by N.I. Klimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article