Namespaces
Variants
Actions

Difference between revisions of "User:Camillo.delellis/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m
Line 8: Line 8:
  
 
==Functions of one variable==
 
==Functions of one variable==
===Definition===
+
===Definition 1===
 +
Let $I\subset \mathbb R$ be an interval. A function $f: I\to \mathbb R$ is said to have bounded variation if
 +
its [[Variation of a function|total variation]] is bounded. The total variation is defined in the following way.
 +
 
 +
'''Definition 1'''
 +
Let $I\subset \mathbb R$ be an interval and consider the collection $\Pi$ of ordered $2N$-ples points $a_1<b_1<a_2< b_2 < \ldots < a_N<b_N\in I$,
 +
where $N$ is an arbitrary natural number. The total variation of a function $f: I\to \mathbb R$ is given by
 +
\begin{equation}\label{e:TV}
 +
TV\, (f) := \sup \left\{ \sum_{i=1}^N |f(b_i)-f(a_i)| : (a_1, \ldots, b_N)\in\Pi\right\}\,
 +
\end{equation}
 +
(cp. with Definition ?? of {{cite|AFP}} or Definition ?? of {{Cite|Ro}}).
 +
 
 
====Generalizations====
 
====Generalizations====
 +
The definition of total variation of a function of one real variable can be easily generalized when the target is a [[Metric space|metric space]] $(X,d)$: it suffices to substitute $|f(b_i)-f(a_i)|$ with $d (f(a_i), f(b_i))$ in \ref{e:TV}. Consequently, one defines functions of bounded variation taking values in an arbitrary metric space. Observe that, if $f:I\to X$ is a function of bounded variation and $\varphi:X\to Y$ a [[Lipschitz condition|Lipschitz map]], then $\varphi\circ f$ is also a function of bounded variation and
 +
\[
 +
TV\, (\varphi\circ f) \leq {\rm Lip (\varphi)}\, TV\, (f)\, ,
 +
\]
 +
where ${\rm Lip}\, (\varphi)$ denotes the Lipschitz constant of $\varphi$.
 +
 +
As a corollary we derive
 +
 +
'''Proposition 2'''
 +
A function $(f^1, \ldots, f^k) = f: I\to \mathbb R^k$ is of bounded variation if and only if each coordinate function $f^j$ is of bounded variation.
 +
 
===General properties===
 
===General properties===
 
===Structure theorem===
 
===Structure theorem===
Line 15: Line 37:
 
===Examples===
 
===Examples===
 
===Historical remark===
 
===Historical remark===
====Jordan criterion====
+
Functions of bounded variation were introduced for the first time by C. Jordan in {{Cite|Jo}} to study the  pointwise convergence of Fourier series. In particular Jordan proved the following generalization of [[Dirichlet theorem]] on the convergence of Fourier series, called [[Jordan criterion]]
 +
 
 +
'''Theorem'''
 +
Let $f: \mathbb R\to\mathbb R$ be a $2\pi$ periodic square summable function.
 +
* If $f$ has bounded variation in an open interval $I$ then its Fourier series converges to $\frac{1}{2} (f (x^+) + f(x^-))$ at every $x\in I$.
 +
* If in addition $f$ is continuous in $I$ then its Fourier series converges uniformly to $f$ on every closed interval $J\subset I$.
 +
 
 +
See {{Cite|Zy}} for a proof.
 +
 
 
==Functions of several variables==
 
==Functions of several variables==
 
===Historical remarks===
 
===Historical remarks===
Line 38: Line 68:
 
===Cahn-Hilliard===
 
===Cahn-Hilliard===
 
==References==
 
==References==
 +
{|
 +
|-
 +
|valign="top"|{{Ref|AFP}}||    L. Ambrosio, N.  Fusco, D.  Pallara, "Functions of bounded variations  and  free  discontinuity  problems". Oxford Mathematical Monographs. The    Clarendon Press,  Oxford University Press, New York, 2000.      {{MR|1857292}}{{ZBL|0957.49001}}
 +
|-
 +
|valign="top"|{{Ref|EG}}||  L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of  functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL,  1992. {{MR|1158660}} {{ZBL|0804.2800}}
 +
|-
 +
|valign="top"|{{Ref|Ha}}|| P.R. Halmos,  "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}}
 +
|-
 +
|valign="top"|{{Ref|HS}}||  E. Hewitt,  K.R. Stromberg,  "Real and abstract analysis" , Springer  (1965) {{MR|0188387}} {{ZBL|0137.03202}}
 +
|-
 +
|valign="top"|{{Ref|Jo}}|| C. Jordan,  "Sur la série de Fourier"  ''C.R. Acad. Sci. Paris'' , '''92'''  (1881)  pp. 228–230
 +
|-
 +
|valign="top"|{{Ref|Ro}}|| H.L. Royden,  "Real analysis" , Macmillan  (1969) {{MR|0151555}} {{ZBL|0197.03501}}
 +
|-
 +
|valign="top"|{{Ref|Zy}}|| A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)
 +
|-
 +
|}

Revision as of 08:48, 19 August 2012

2020 Mathematics Subject Classification: Primary: 26A45 [MSN][ZBL] (Functions of one variable)

2020 Mathematics Subject Classification: Primary: 26B30 Secondary: 28A1526B1549Q15 [MSN][ZBL] (Functions of severable variables)


Functions of one variable

Definition 1

Let $I\subset \mathbb R$ be an interval. A function $f: I\to \mathbb R$ is said to have bounded variation if its total variation is bounded. The total variation is defined in the following way.

Definition 1 Let $I\subset \mathbb R$ be an interval and consider the collection $\Pi$ of ordered $2N$-ples points $a_1<b_1<a_2< b_2 < \ldots < a_N<b_N\in I$, where $N$ is an arbitrary natural number. The total variation of a function $f: I\to \mathbb R$ is given by \begin{equation}\label{e:TV} TV\, (f) := \sup \left\{ \sum_{i=1}^N |f(b_i)-f(a_i)| : (a_1, \ldots, b_N)\in\Pi\right\}\, \end{equation} (cp. with Definition ?? of [AFP] or Definition ?? of [Ro]).

Generalizations

The definition of total variation of a function of one real variable can be easily generalized when the target is a metric space $(X,d)$: it suffices to substitute $|f(b_i)-f(a_i)|$ with $d (f(a_i), f(b_i))$ in \ref{e:TV}. Consequently, one defines functions of bounded variation taking values in an arbitrary metric space. Observe that, if $f:I\to X$ is a function of bounded variation and $\varphi:X\to Y$ a Lipschitz map, then $\varphi\circ f$ is also a function of bounded variation and \[ TV\, (\varphi\circ f) \leq {\rm Lip (\varphi)}\, TV\, (f)\, , \] where ${\rm Lip}\, (\varphi)$ denotes the Lipschitz constant of $\varphi$.

As a corollary we derive

Proposition 2 A function $(f^1, \ldots, f^k) = f: I\to \mathbb R^k$ is of bounded variation if and only if each coordinate function $f^j$ is of bounded variation.

General properties

Structure theorem

Lebesgue decomposition

Examples

Historical remark

Functions of bounded variation were introduced for the first time by C. Jordan in [Jo] to study the pointwise convergence of Fourier series. In particular Jordan proved the following generalization of Dirichlet theorem on the convergence of Fourier series, called Jordan criterion

Theorem Let $f: \mathbb R\to\mathbb R$ be a $2\pi$ periodic square summable function.

  • If $f$ has bounded variation in an open interval $I$ then its Fourier series converges to $\frac{1}{2} (f (x^+) + f(x^-))$ at every $x\in I$.
  • If in addition $f$ is continuous in $I$ then its Fourier series converges uniformly to $f$ on every closed interval $J\subset I$.

See [Zy] for a proof.

Functions of several variables

Historical remarks

Definition

Consistency in one variable

Functional properties

Structure theorem

Slicing

Tonelli variation

Caccioppoli sets

Reduced boundary

Gauss-Green theorem

Coarea formula

Volpert chain rule

Alberti's rank-one theorem

Functions of special bounded variation

Notable applications

Plateau's problem

Isoperimetry

Hyperbolic conservation laws

Mumford shah functional

Cahn-Hilliard

References

[AFP] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Ha] P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
[HS] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202
[Jo] C. Jordan, "Sur la série de Fourier" C.R. Acad. Sci. Paris , 92 (1881) pp. 228–230
[Ro] H.L. Royden, "Real analysis" , Macmillan (1969) MR0151555 Zbl 0197.03501
[Zy] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Camillo.delellis/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Camillo.delellis/sandbox&oldid=27689