|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | n0676401.png |
| + | $#A+1 = 83 n = 0 |
| + | $#C+1 = 83 : ~/encyclopedia/old_files/data/N067/N.0607640 Normal sheaf |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let | | An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676401.png" /></td> </tr></table>
| + | $$ |
| + | ( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} ) \rightarrow ( X, {\mathcal O} _ {X} ) |
| + | $$ |
| | | |
− | be a morphism of ringed spaces such that the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676402.png" /> is surjective, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676403.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676404.png" /> is a sheaf of ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676405.png" /> and is, therefore, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676406.png" />-module. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676407.png" /> is called the conormal sheaf of the morphism and the dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676408.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676409.png" /> is called the normal sheaf of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764010.png" />. These sheaves are, as a rule, examined in the following special cases. | + | be a morphism of ringed spaces such that the homomorphism $ f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $ |
| + | is surjective, and let $ {\mathcal J} = \mathop{\rm Ker} f ^ { \# } $. |
| + | Then $ {\mathcal J} / {\mathcal J} ^ {2} $ |
| + | is a sheaf of ideals in $ f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $ |
| + | and is, therefore, an $ {\mathcal O} _ {Y} $- |
| + | module. Here $ {\mathcal N} _ {Y/X} ^ {*} = ( {\mathcal J} / {\mathcal J} ^ {2} ) $ |
| + | is called the conormal sheaf of the morphism and the dual $ {\mathcal O} _ {Y} $- |
| + | module $ {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y} } ( {\mathcal N} _ {Y/X} ^ {*} , {\mathcal O} _ {Y} ) $ |
| + | is called the normal sheaf of the morphism $ f $. |
| + | These sheaves are, as a rule, examined in the following special cases. |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764012.png" /> are differentiable manifolds (for example, of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764013.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764014.png" /> is an immersion. There is an exact sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764015.png" />-modules | + | 1) $ X $ |
| + | and $ Y $ |
| + | are differentiable manifolds (for example, of class $ C ^ \infty $), |
| + | and $ f: Y \rightarrow X $ |
| + | is an immersion. There is an exact sequence of $ {\mathcal O} _ {Y} $- |
| + | modules |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764016.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \ |
| + | f ^ { * } \Omega _ {X} ^ {1} \rightarrow \Omega _ {Y} ^ {1} \rightarrow 0, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764018.png" /> are the sheaves of germs of smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764019.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764022.png" /> is defined as differentiation of functions. The dual exact sequence | + | where $ \Omega _ {X} ^ {1} $ |
| + | and $ \Omega _ {Y} ^ {1} $ |
| + | are the sheaves of germs of smooth $ 1 $- |
| + | forms on $ X $ |
| + | and $ Y $, |
| + | and $ \delta $ |
| + | is defined as differentiation of functions. The dual exact sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764023.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow {\mathcal T} _ {Y} \rightarrow f ^ { * } {\mathcal T} _ {X} \rightarrow {\mathcal N} _ {Y/X} \rightarrow 0, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764025.png" /> are the tangent sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764027.png" />, shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764028.png" /> is isomorphic to the sheaf of germs of smooth sections of the [[Normal bundle|normal bundle]] of the immersion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764030.png" /> is an immersed submanifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764032.png" /> are called the normal and conormal sheaves of the submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764033.png" />. | + | where $ {\mathcal T} _ {X} $ |
| + | and $ {\mathcal T} _ {Y} $ |
| + | are the tangent sheaves on $ X $ |
| + | and $ Y $, |
| + | shows that $ {\mathcal N} _ {Y/X} $ |
| + | is isomorphic to the sheaf of germs of smooth sections of the [[Normal bundle|normal bundle]] of the immersion $ f $. |
| + | If $ Y $ |
| + | is an immersed submanifold, then $ {\mathcal N} _ {Y/X} $ |
| + | and $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | are called the normal and conormal sheaves of the submanifold $ Y $. |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764034.png" /> is an irreducible separable scheme of finite type over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764036.png" /> is a closed subscheme of it and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764037.png" /> is an imbedding. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764039.png" /> are called the normal and conormal sheaves of the subscheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764040.png" />. There is also an exact sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764041.png" />-modules | + | 2) $ ( X, {\mathcal O} _ {X} ) $ |
| + | is an irreducible separable scheme of finite type over an algebraically closed field $ k $, |
| + | $ ( Y, {\mathcal O} _ {Y} ) $ |
| + | is a closed subscheme of it and $ f: Y \rightarrow X $ |
| + | is an imbedding. Then $ {\mathcal N} _ {Y/X} $ |
| + | and $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | are called the normal and conormal sheaves of the subscheme $ Y $. |
| + | There is also an exact sequence of $ {\mathcal O} _ {Y} $- |
| + | modules |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ \tag{* } |
| + | {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \Omega _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ |
| + | \Omega _ {Y} \rightarrow 0, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764044.png" /> are the sheaves of differentials on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764046.png" />. The sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764048.png" /> are quasi-coherent, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764049.png" /> is a Noetherian scheme, then they are coherent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764050.png" /> is a non-singular variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764052.png" /> is a non-singular variety, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764053.png" /> is locally free and the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764054.png" /> in (*) is injective. In this case one obtains the dual exact sequence | + | where $ \Omega _ {X} $ |
| + | and $ \Omega _ {Y} $ |
| + | are the sheaves of differentials on $ X $ |
| + | and $ Y $. |
| + | The sheaves $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | and $ {\mathcal N} _ {Y/X} $ |
| + | are quasi-coherent, and if $ X $ |
| + | is a Noetherian scheme, then they are coherent. If $ X $ |
| + | is a non-singular variety over $ k $ |
| + | and $ Y $ |
| + | is a non-singular variety, then $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | is locally free and the homomorphism $ \delta $ |
| + | in (*) is injective. In this case one obtains the dual exact sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764055.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow {\mathcal T} _ {Y} \rightarrow {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ |
| + | {\mathcal N} _ {Y/X} \rightarrow 0, |
| + | $$ |
| | | |
− | so that the normal sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764056.png" /> is locally free of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764057.png" /> corresponding to the normal bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764058.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764060.png" /> is the invertible sheaf corresponding to the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764061.png" />. | + | so that the normal sheaf $ {\mathcal N} _ {Y/X} $ |
| + | is locally free of rank $ r = \mathop{\rm codim} Y $ |
| + | corresponding to the normal bundle over $ Y $. |
| + | In particular, if $ r = 1 $, |
| + | then $ {\mathcal N} _ {Y/X} $ |
| + | is the invertible sheaf corresponding to the divisor $ Y $. |
| | | |
− | In terms of normal sheaves one can express the self-intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764062.png" /> of a non-singular subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764063.png" />. Namely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764065.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764066.png" />-th [[Chern class|Chern class]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764067.png" /> is the homomorphism of Chow rings (cf. [[Chow ring|Chow ring]]) corresponding to the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764068.png" />. | + | In terms of normal sheaves one can express the self-intersection $ Y \cdot Y $ |
| + | of a non-singular subvariety $ Y \subset X $. |
| + | Namely, $ Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $, |
| + | where $ c _ {r} $ |
| + | is the $ r $- |
| + | th [[Chern class|Chern class]] and $ f _ {*} : A ( Y) \rightarrow A ( X) $ |
| + | is the homomorphism of Chow rings (cf. [[Chow ring|Chow ring]]) corresponding to the imbedding $ f: Y \rightarrow X $. |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764069.png" /> is a complex space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764070.png" /> is a closed analytic subspace of it and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764071.png" /> is the imbedding. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764073.png" /> are called the normal and conormal sheaves of the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764074.png" />; they are coherent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764075.png" /> is an analytic manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764076.png" /> an analytic submanifold of it, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764077.png" /> is the sheaf of germs of holomorphic sections of the normal bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764078.png" />. | + | 3) $ ( X, {\mathcal O} _ {X} ) $ |
| + | is a complex space, $ ( Y, {\mathcal O} _ {Y} ) $ |
| + | is a closed analytic subspace of it and $ f $ |
| + | is the imbedding. Then $ {\mathcal N} _ {Y/X} $ |
| + | and $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | are called the normal and conormal sheaves of the subspace $ Y $; |
| + | they are coherent. If $ X $ |
| + | is an analytic manifold and $ Y $ |
| + | an analytic submanifold of it, then $ {\mathcal N} _ {Y/X} $ |
| + | is the sheaf of germs of holomorphic sections of the normal bundle over $ Y $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764079.png" /> is a non-singular variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764081.png" /> is a subscheme of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764082.png" /> that is locally a complete intersection, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764083.png" /> is locally free. | + | If $ X $ |
| + | is a non-singular variety over $ k $ |
| + | and $ Y $ |
| + | is a subscheme of $ X $ |
| + | that is locally a complete intersection, then $ {\mathcal N} _ {Y/X} ^ {*} $ |
| + | is locally free. |
An analogue to a normal bundle in sheaf theory. Let
$$
( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} ) \rightarrow ( X, {\mathcal O} _ {X} )
$$
be a morphism of ringed spaces such that the homomorphism $ f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $
is surjective, and let $ {\mathcal J} = \mathop{\rm Ker} f ^ { \# } $.
Then $ {\mathcal J} / {\mathcal J} ^ {2} $
is a sheaf of ideals in $ f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $
and is, therefore, an $ {\mathcal O} _ {Y} $-
module. Here $ {\mathcal N} _ {Y/X} ^ {*} = ( {\mathcal J} / {\mathcal J} ^ {2} ) $
is called the conormal sheaf of the morphism and the dual $ {\mathcal O} _ {Y} $-
module $ {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y} } ( {\mathcal N} _ {Y/X} ^ {*} , {\mathcal O} _ {Y} ) $
is called the normal sheaf of the morphism $ f $.
These sheaves are, as a rule, examined in the following special cases.
1) $ X $
and $ Y $
are differentiable manifolds (for example, of class $ C ^ \infty $),
and $ f: Y \rightarrow X $
is an immersion. There is an exact sequence of $ {\mathcal O} _ {Y} $-
modules
$$
0 \rightarrow {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \
f ^ { * } \Omega _ {X} ^ {1} \rightarrow \Omega _ {Y} ^ {1} \rightarrow 0,
$$
where $ \Omega _ {X} ^ {1} $
and $ \Omega _ {Y} ^ {1} $
are the sheaves of germs of smooth $ 1 $-
forms on $ X $
and $ Y $,
and $ \delta $
is defined as differentiation of functions. The dual exact sequence
$$
0 \rightarrow {\mathcal T} _ {Y} \rightarrow f ^ { * } {\mathcal T} _ {X} \rightarrow {\mathcal N} _ {Y/X} \rightarrow 0,
$$
where $ {\mathcal T} _ {X} $
and $ {\mathcal T} _ {Y} $
are the tangent sheaves on $ X $
and $ Y $,
shows that $ {\mathcal N} _ {Y/X} $
is isomorphic to the sheaf of germs of smooth sections of the normal bundle of the immersion $ f $.
If $ Y $
is an immersed submanifold, then $ {\mathcal N} _ {Y/X} $
and $ {\mathcal N} _ {Y/X} ^ {*} $
are called the normal and conormal sheaves of the submanifold $ Y $.
2) $ ( X, {\mathcal O} _ {X} ) $
is an irreducible separable scheme of finite type over an algebraically closed field $ k $,
$ ( Y, {\mathcal O} _ {Y} ) $
is a closed subscheme of it and $ f: Y \rightarrow X $
is an imbedding. Then $ {\mathcal N} _ {Y/X} $
and $ {\mathcal N} _ {Y/X} ^ {*} $
are called the normal and conormal sheaves of the subscheme $ Y $.
There is also an exact sequence of $ {\mathcal O} _ {Y} $-
modules
$$ \tag{* }
{\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \Omega _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \
\Omega _ {Y} \rightarrow 0,
$$
where $ \Omega _ {X} $
and $ \Omega _ {Y} $
are the sheaves of differentials on $ X $
and $ Y $.
The sheaves $ {\mathcal N} _ {Y/X} ^ {*} $
and $ {\mathcal N} _ {Y/X} $
are quasi-coherent, and if $ X $
is a Noetherian scheme, then they are coherent. If $ X $
is a non-singular variety over $ k $
and $ Y $
is a non-singular variety, then $ {\mathcal N} _ {Y/X} ^ {*} $
is locally free and the homomorphism $ \delta $
in (*) is injective. In this case one obtains the dual exact sequence
$$
0 \rightarrow {\mathcal T} _ {Y} \rightarrow {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \
{\mathcal N} _ {Y/X} \rightarrow 0,
$$
so that the normal sheaf $ {\mathcal N} _ {Y/X} $
is locally free of rank $ r = \mathop{\rm codim} Y $
corresponding to the normal bundle over $ Y $.
In particular, if $ r = 1 $,
then $ {\mathcal N} _ {Y/X} $
is the invertible sheaf corresponding to the divisor $ Y $.
In terms of normal sheaves one can express the self-intersection $ Y \cdot Y $
of a non-singular subvariety $ Y \subset X $.
Namely, $ Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $,
where $ c _ {r} $
is the $ r $-
th Chern class and $ f _ {*} : A ( Y) \rightarrow A ( X) $
is the homomorphism of Chow rings (cf. Chow ring) corresponding to the imbedding $ f: Y \rightarrow X $.
3) $ ( X, {\mathcal O} _ {X} ) $
is a complex space, $ ( Y, {\mathcal O} _ {Y} ) $
is a closed analytic subspace of it and $ f $
is the imbedding. Then $ {\mathcal N} _ {Y/X} $
and $ {\mathcal N} _ {Y/X} ^ {*} $
are called the normal and conormal sheaves of the subspace $ Y $;
they are coherent. If $ X $
is an analytic manifold and $ Y $
an analytic submanifold of it, then $ {\mathcal N} _ {Y/X} $
is the sheaf of germs of holomorphic sections of the normal bundle over $ Y $.
References
If $ X $
is a non-singular variety over $ k $
and $ Y $
is a subscheme of $ X $
that is locally a complete intersection, then $ {\mathcal N} _ {Y/X} ^ {*} $
is locally free.