Difference between revisions of "Stiefel-Whitney class"
Ulf Rehmann (talk | contribs) m (moved Stiefel–Whitney class to Stiefel-Whitney class: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0877901.png | ||
+ | $#A+1 = 44 n = 1 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/S087/S.0807790 Stiefel\ANDWhitney class | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | in | + | A [[Characteristic class|characteristic class]] with values in $ H ^ \star ( ; \mathbf Z _ {2} ) $, |
+ | defined for real vector bundles. The Stiefel–Whitney classes are denoted by $ w _ {i} $, | ||
+ | $ i > 0 $, | ||
+ | and for a real vector bundle $ \xi $ | ||
+ | over a topological space $ B $, | ||
+ | the class $ w _ {i} ( \xi ) $ | ||
+ | lies in $ H ^ {i} ( B; \mathbf Z _ {2} ) $. | ||
+ | These classes were introduced by E. Stiefel [[#References|[1]]] and H. Whitney [[#References|[2]]] and have the following properties. 1) For two real vector bundles $ \xi , \eta $ | ||
+ | over a common base, | ||
− | + | $$ | |
+ | w _ {k} ( \xi \oplus \eta ) = \sum _ { i } w _ {i} ( \xi ) w _ {k-} i ( \eta ),\ \ | ||
+ | w _ {0} = 1; | ||
+ | $$ | ||
− | + | in other words, $ w( \xi \oplus \eta ) = w( \xi ) w( \eta ) $, | |
+ | where $ w = 1+ w _ {1} + w _ {2} + \dots $ | ||
+ | is the complete Stiefel–Whitney class. 2) For the one-dimensional universal bundle $ \zeta _ {1} $ | ||
+ | over $ \mathbf R P ^ \infty $ | ||
+ | the equality $ w( \zeta _ {1} ) = 1 + y $ | ||
+ | holds, where $ y $ | ||
+ | is the non-zero element of the group $ H ^ {1} ( \mathbf R P ^ \infty ; \mathbf Z _ {2} ) = \mathbf Z _ {2} $. | ||
+ | These two properties together with naturality for induced bundles define the Stiefel–Whitney classes uniquely. The Stiefel–Whitney classes are stable, i.e. $ w( \xi \oplus \theta ) = w ( \xi ) $, | ||
+ | where $ \theta $ | ||
+ | is the trivial bundle, and $ w _ {i} ( \xi ) = 0 $ | ||
+ | for $ i > \mathop{\rm dim} \xi $. | ||
+ | For an oriented $ n $- | ||
+ | dimensional vector bundle $ \xi $ | ||
+ | over a base $ B $, | ||
+ | $ w _ {n} ( \xi ) \in H ^ {n} ( B; \mathbf Z _ {2} ) $ | ||
+ | coincides with the reduction modulo 2 of the [[Euler class|Euler class]]. | ||
− | + | For a vector bundle $ \xi $ | |
+ | over $ B $, | ||
+ | let $ B ^ \xi $ | ||
+ | be the [[Thom space|Thom space]] of this bundle. Further, let $ \Phi : H ^ \star ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {\star+ n } ( B ^ \xi ; \mathbf Z _ {2} ) $ | ||
+ | be the [[Thom isomorphism|Thom isomorphism]]. Then the complete Stiefel–Whitney class $ w( \xi ) $ | ||
+ | coincides with | ||
− | + | $$ | |
+ | \Phi ^ {-} 1 Sq \Phi ( 1) \in H ^ \star ( B; \mathbf Z _ {2} ), | ||
+ | $$ | ||
− | + | where $ Sq = 1 + Sq ^ {1} + Sq ^ {2} + \dots $ | |
+ | is the complete [[Steenrod square|Steenrod square]]. This property of Stiefel–Whitney classes can be used as their definition. Stiefel–Whitney classes are homotopy invariants in the sense that they coincide for fibre-wise homotopically-equivalent bundles over a common base. | ||
− | + | Any characteristic class with values in $ H ^ \star ( ; \mathbf Z _ {2} ) $, | |
+ | defined for real vector bundles, can be expressed by Stiefel–Whitney classes: The rings $ H ^ {\star\star} ( \mathop{\rm BO} _ {n} ; \mathbf Z _ {2} ) $ | ||
+ | and $ H ^ {\star\star} ( \mathop{\rm BO} ; \mathbf Z _ {2} ) $ | ||
+ | are rings of formal power series in the Stiefel–Whitney classes: | ||
+ | |||
+ | $$ | ||
+ | H ^ {\star\star} ( \mathop{\rm BO} _ {n} ; \mathbf Z _ {2} ) = \mathbf Z _ {2} [[ w _ {1} \dots w _ {n} ]], | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | H ^ {\star\star} ( \mathop{\rm BO} ; \mathbf Z _ {2} ) = \mathbf Z _ {2} [[ w _ {1} ,\dots ]]. | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Stiefel, "Richtungsfelden und Fernparallelismus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779037.png" />-dimensionalen Mannigfaltigkeiten" ''Comm. Math. Helv.'' , '''8''' : 4 (1935–1936) pp. 305–353</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Whitney, "Topological properties of differentiable manifolds" ''Bull. Amer. Math. Soc.'' , '''43''' (1937) pp. 785–805</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Stiefel, "Richtungsfelden und Fernparallelismus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779037.png" />-dimensionalen Mannigfaltigkeiten" ''Comm. Math. Helv.'' , '''8''' : 4 (1935–1936) pp. 305–353</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Whitney, "Topological properties of differentiable manifolds" ''Bull. Amer. Math. Soc.'' , '''43''' (1937) pp. 785–805</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The notation | + | The notation $ H ^ {\star\star} ( X; G) $ |
+ | denotes the product of the Abelian groups $ H ^ {n} ( X; G) $, | ||
+ | while $ H ^ \star ( X; G) $ | ||
+ | is the direct sum; the notation $ H ^ \star ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {\star+} n ( B ^ \xi ; \mathbf Z _ {2} ) $ | ||
+ | means that there is a graded homomorphism of degree $ n $: | ||
+ | $ H ^ {m} ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {m+} n ( B ^ \xi ; \mathbf Z _ {2} ) $. | ||
+ | For the classifying spaces $ \mathop{\rm BO} _ {n} $ | ||
+ | and $ \mathop{\rm BO} $ | ||
+ | see [[Classifying space|Classifying space]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> |
Revision as of 08:23, 6 June 2020
A characteristic class with values in $ H ^ \star ( ; \mathbf Z _ {2} ) $,
defined for real vector bundles. The Stiefel–Whitney classes are denoted by $ w _ {i} $,
$ i > 0 $,
and for a real vector bundle $ \xi $
over a topological space $ B $,
the class $ w _ {i} ( \xi ) $
lies in $ H ^ {i} ( B; \mathbf Z _ {2} ) $.
These classes were introduced by E. Stiefel [1] and H. Whitney [2] and have the following properties. 1) For two real vector bundles $ \xi , \eta $
over a common base,
$$ w _ {k} ( \xi \oplus \eta ) = \sum _ { i } w _ {i} ( \xi ) w _ {k-} i ( \eta ),\ \ w _ {0} = 1; $$
in other words, $ w( \xi \oplus \eta ) = w( \xi ) w( \eta ) $, where $ w = 1+ w _ {1} + w _ {2} + \dots $ is the complete Stiefel–Whitney class. 2) For the one-dimensional universal bundle $ \zeta _ {1} $ over $ \mathbf R P ^ \infty $ the equality $ w( \zeta _ {1} ) = 1 + y $ holds, where $ y $ is the non-zero element of the group $ H ^ {1} ( \mathbf R P ^ \infty ; \mathbf Z _ {2} ) = \mathbf Z _ {2} $. These two properties together with naturality for induced bundles define the Stiefel–Whitney classes uniquely. The Stiefel–Whitney classes are stable, i.e. $ w( \xi \oplus \theta ) = w ( \xi ) $, where $ \theta $ is the trivial bundle, and $ w _ {i} ( \xi ) = 0 $ for $ i > \mathop{\rm dim} \xi $. For an oriented $ n $- dimensional vector bundle $ \xi $ over a base $ B $, $ w _ {n} ( \xi ) \in H ^ {n} ( B; \mathbf Z _ {2} ) $ coincides with the reduction modulo 2 of the Euler class.
For a vector bundle $ \xi $ over $ B $, let $ B ^ \xi $ be the Thom space of this bundle. Further, let $ \Phi : H ^ \star ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {\star+ n } ( B ^ \xi ; \mathbf Z _ {2} ) $ be the Thom isomorphism. Then the complete Stiefel–Whitney class $ w( \xi ) $ coincides with
$$ \Phi ^ {-} 1 Sq \Phi ( 1) \in H ^ \star ( B; \mathbf Z _ {2} ), $$
where $ Sq = 1 + Sq ^ {1} + Sq ^ {2} + \dots $ is the complete Steenrod square. This property of Stiefel–Whitney classes can be used as their definition. Stiefel–Whitney classes are homotopy invariants in the sense that they coincide for fibre-wise homotopically-equivalent bundles over a common base.
Any characteristic class with values in $ H ^ \star ( ; \mathbf Z _ {2} ) $, defined for real vector bundles, can be expressed by Stiefel–Whitney classes: The rings $ H ^ {\star\star} ( \mathop{\rm BO} _ {n} ; \mathbf Z _ {2} ) $ and $ H ^ {\star\star} ( \mathop{\rm BO} ; \mathbf Z _ {2} ) $ are rings of formal power series in the Stiefel–Whitney classes:
$$ H ^ {\star\star} ( \mathop{\rm BO} _ {n} ; \mathbf Z _ {2} ) = \mathbf Z _ {2} [[ w _ {1} \dots w _ {n} ]], $$
$$ H ^ {\star\star} ( \mathop{\rm BO} ; \mathbf Z _ {2} ) = \mathbf Z _ {2} [[ w _ {1} ,\dots ]]. $$
References
[1] | E. Stiefel, "Richtungsfelden und Fernparallelismus in -dimensionalen Mannigfaltigkeiten" Comm. Math. Helv. , 8 : 4 (1935–1936) pp. 305–353 |
[2] | H. Whitney, "Topological properties of differentiable manifolds" Bull. Amer. Math. Soc. , 43 (1937) pp. 785–805 |
[3] | J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) |
[4] | R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) |
[5] | N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) |
Comments
The notation $ H ^ {\star\star} ( X; G) $ denotes the product of the Abelian groups $ H ^ {n} ( X; G) $, while $ H ^ \star ( X; G) $ is the direct sum; the notation $ H ^ \star ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {\star+} n ( B ^ \xi ; \mathbf Z _ {2} ) $ means that there is a graded homomorphism of degree $ n $: $ H ^ {m} ( B; \mathbf Z _ {2} ) \rightarrow \widetilde{H} {} ^ {m+} n ( B ^ \xi ; \mathbf Z _ {2} ) $. For the classifying spaces $ \mathop{\rm BO} _ {n} $ and $ \mathop{\rm BO} $ see Classifying space.
References
[a1] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
Stiefel-Whitney class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stiefel-Whitney_class&oldid=23045