Difference between revisions of "Weil algebra"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
| Line 28: | Line 28: | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Ch. Ehresmann, "Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal. II. L'espace des jets d'ordre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005070.png" /> de <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005071.png" /> dans <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005072.png" />. III. Transitivité des prolongements" ''C.R. Acad. Sci. Paris'' , '''233''' (1951) pp. 598–600; 777–779; 1081–1083 {{MR|0045436}} {{MR|0045435}} {{MR|0044198}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I. Kolář, P.W. Michor, J. Slovák, "Natural operations in differential geometry" , Springer (1993) {{MR|1202431}} {{ZBL|1084.53001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Weil, "Théorie des points proches sur les variétés differentielles" ''Colloq. Internat. Centre Nat. Rech. Sci.'' , '''52''' (1953) pp. 111–117</TD></TR></table> |
Revision as of 21:57, 30 March 2012
Motivated by algebraic geometry, A. Weil [a3] suggested the treatment of infinitesimal objects as homomorphisms from algebras of smooth functions
into some real finite-dimensional commutative algebra
with unit. The points in
correspond to the choice
, while the algebra
,
, of dual numbers (also called Study numbers) leads to the tangent vectors at points in
(viewed as derivations on functions). At the same time, Ch. Ehresmann established similar objects, jets (cf. also Jet), in the realm of differential geometry, cf. [a1].
Since
is formally real (i.e.
is invertible for all
), the values of the homomorphisms in
are in formally real subalgebras. Now, for each finite-dimensional real commutative unital algebra
which is formally real, there is a decomposition of the unit
into all minimal idempotent elements. Thus,
, where
, and
are nilpotent ideals in
. A real unital finite-dimensional commutative algebra
is called a Weil algebra if it is of the form
![]() |
where
is the ideal of all nilpotent elements in
. The smallest
with the property
is called the depth, or order, of
.
In other words, one may also characterize the Weil algebras as the formally real and local (i.e. the ring structure is local, cf. also Local ring) finite-dimensional commutative real unital algebras. See [a2], 35.1, for details.
As a consequence of the Nakayama lemma, the Weil algebras can be also characterized as the local finite-dimensional quotients of the algebras of real polynomials
. Consequently, the Weil algebras
correspond to choices of ideals
in
of finite codimension. The algebra of Study numbers
is given by
, for example. Equivalently, one may consider the algebras of formal power series or the algebras of germs of smooth functions at the origin
(cf. also Germ) instead of the polynomials.
The width of a Weil algebra
is defined as the dimension of the vector space
. If
is an ideal of finite codimension in
,
, then the width of
equals
. For example, the Weil algebra
![]() |
has width
and order
, and it coincides with the algebra
of
-jets of smooth functions at the origin in
. Moreover, each Weil algebra of width
and order
is a quotient of
.
Tensor products of Weil algebras are Weil algebras again. For instance,
.
The infinitesimal objects of type
attached to points in
are simply
. All smooth functions
extend to
by the evaluation of the Taylor series (cf. also Whitney extension theorem)
![]() |
where
,
,
are multi-indices,
. Applying this formula to all components of a mapping
, one obtains an assignment functorial in both
and
. Of course, this definition extends to a functor on all locally defined smooth mappings
and so each Weil algebra gives rise to a Weil functor
. (See Weil bundle for more details.)
The automorphism group
of a Weil algebra is a Lie subgroup (cf. also Lie group) in
and its Lie algebra coincides with the space of all derivations (cf. also Derivation in a ring) on
,
, i.e. all mappings
satisfying
, cf. [a2], 42.9.
References
| [a1] | Ch. Ehresmann, "Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal. II. L'espace des jets d'ordre de dans . III. Transitivité des prolongements" C.R. Acad. Sci. Paris , 233 (1951) pp. 598–600; 777–779; 1081–1083 MR0045436 MR0045435 MR0044198 |
| [a2] | I. Kolář, P.W. Michor, J. Slovák, "Natural operations in differential geometry" , Springer (1993) MR1202431 Zbl 1084.53001 |
| [a3] | A. Weil, "Théorie des points proches sur les variétés differentielles" Colloq. Internat. Centre Nat. Rech. Sci. , 52 (1953) pp. 111–117 |
Weil algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weil_algebra&oldid=18951



de
dans
. III. Transitivité des prolongements" C.R. Acad. Sci. Paris , 233 (1951) pp. 598–600; 777–779; 1081–1083