|
|
Line 1: |
Line 1: |
− | A transition from a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602801.png" /> to the ring of fractions (cf. [[Fractions, ring of|Fractions, ring of]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602802.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602803.png" /> is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602804.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602805.png" /> can be defined as the solution of the problem of a universal mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602806.png" /> into a ring under which all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602807.png" /> become invertible. However, there are explicit constructions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602808.png" />:
| + | <!-- |
| + | l0602801.png |
| + | $#A+1 = 72 n = 0 |
| + | $#C+1 = 72 : ~/encyclopedia/old_files/data/L060/L.0600280 Localization in a commutative algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | 1) as the set of fractions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l0602809.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028011.png" /> is a product of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028012.png" /> (two fractions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028014.png" /> are regarded as equivalent if and only if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028015.png" /> that is a product of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028016.png" /> and is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028017.png" />; fractions are added and multiplied by the usual rules);
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | 2) as the quotient ring of the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028019.png" />, with respect to the ideal generated by the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028021.png" />;
| + | A transition from a commutative ring $ A $ |
| + | to the ring of fractions (cf. [[Fractions, ring of|Fractions, ring of]]) $ A [ S ^ {-} 1 ] $, |
| + | where $ S $ |
| + | is a subset of $ A $. |
| + | The ring $ A [ S ^ {-} 1 ] $ |
| + | can be defined as the solution of the problem of a universal mapping from $ A $ |
| + | into a ring under which all elements of $ S $ |
| + | become invertible. However, there are explicit constructions for $ A [ S ^ {-} 1 ] $: |
| | | |
− | 3) as the [[Inductive limit|inductive limit]] of an inductive system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028022.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028024.png" /> runs through a naturally-ordered free commutative monoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028025.png" />. All the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028026.png" /> are isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028027.png" />, and the homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028028.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028029.png" /> coincide with multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028030.png" />.
| + | 1) as the set of fractions of the form $ a / s $, |
| + | where $ a \in A $ |
| + | and $ s $ |
| + | is a product of elements of $ S $( |
| + | two fractions $ a / s $ |
| + | and $ a ^ \prime / s ^ \prime $ |
| + | are regarded as equivalent if and only if there is an $ s ^ {\prime\prime} $ |
| + | that is a product of elements of $ S $ |
| + | and is such that $ s ^ {\prime\prime} ( s a ^ \prime - s ^ \prime a ) = 0 $; |
| + | fractions are added and multiplied by the usual rules); |
| | | |
− | The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028031.png" /> is canonically mapped into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028032.png" /> and converts the latter into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028033.png" />-algebra. This mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028034.png" /> is injective if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028035.png" /> does not contain any divisor of zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028036.png" />. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028037.png" /> contains a nilpotent element, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028038.png" />.
| + | 2) as the quotient ring of the ring of polynomials $ A [ X _ {s} ] $, |
| + | $ s \in S $, |
| + | with respect to the ideal generated by the polynomials $ s X _ {s} - 1 $, |
| + | $ s \in S $; |
| | | |
− | Without loss of generality the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028039.png" /> can be assumed to be closed with respect to products (such a set is known as multiplicative, or as a multiplicative system). In this case the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028040.png" /> is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028041.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028042.png" />. The most important examples of multiplicative systems are the following:
| + | 3) as the [[Inductive limit|inductive limit]] of an inductive system of $ A $- |
| + | modules $ ( A _ {i} , \phi _ {ij} ) $, |
| + | where $ i $ |
| + | runs through a naturally-ordered free commutative monoid $ N ^ {(} S) $. |
| + | All the $ A _ {i} $ |
| + | are isomorphic to $ A $, |
| + | and the homomorphisms $ \phi _ {ij} : A _ {i} \rightarrow A _ {j} $ |
| + | with $ j = i + n _ {1} s _ {1} + \dots + n _ {k} s _ {k} $ |
| + | coincide with multiplication by $ s _ {1} ^ {n _ {1} } {} \dots s _ {k} ^ {n _ {k} } \in A $. |
| | | |
− | a) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028043.png" /> of all powers of an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028044.png" />;
| + | The ring $ A $ |
| + | is canonically mapped into $ A [ S ^ {-} 1 ] $ |
| + | and converts the latter into an $ A $- |
| + | algebra. This mapping $ A \rightarrow A [ S ^ {-} 1 ] $ |
| + | is injective if and only if $ S $ |
| + | does not contain any divisor of zero in $ A $. |
| + | On the other hand, if $ S $ |
| + | contains a nilpotent element, then $ A [ S ^ {-} 1 ] = 0 $. |
| | | |
− | b) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028045.png" />, that is, the complement of a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028046.png" />. The corresponding ring of fractions is local and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028047.png" />;
| + | Without loss of generality the set $ S $ |
| + | can be assumed to be closed with respect to products (such a set is known as multiplicative, or as a multiplicative system). In this case the ring $ A [ S ^ {-} 1 ] $ |
| + | is also denoted by $ S ^ {-} 1 A $ |
| + | or $ A _ {S} $. |
| + | The most important examples of multiplicative systems are the following: |
| | | |
− | c) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028048.png" /> of all non-divisors of zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028049.png" />.
| + | a) the set $ \{ s ^ {n} \} $ |
| + | of all powers of an element of $ A $; |
| | | |
− | The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028050.png" /> is called the complete ring of fractions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028051.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028052.png" /> is integral, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028053.png" /> is a field of fractions.
| + | b) the set $ A \setminus \mathfrak P $, |
| + | that is, the complement of a prime ideal $ \mathfrak P $. |
| + | The corresponding ring of fractions is local and is denoted by $ A _ {\mathfrak P } $; |
| | | |
− | The operation of localization carries over with no difficulty to arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028054.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028055.png" /> if one sets
| + | c) the set $ R $ |
| + | of all non-divisors of zero in $ A $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028056.png" /></td> </tr></table>
| + | The ring $ R ^ {-} 1 A $ |
| + | is called the complete ring of fractions of $ A $. |
| + | If $ A $ |
| + | is integral, then $ R ^ {-} 1 A = A _ {(} 0) $ |
| + | is a field of fractions. |
| | | |
− | The transition from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028057.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028058.png" /> is an exact functor. In other words, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028059.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028060.png" /> is flat. Localization commutes with direct sums and inductive limits. | + | The operation of localization carries over with no difficulty to arbitrary $ A $- |
| + | modules $ M $ |
| + | if one sets |
| | | |
− | From the geometrical point of view localization means transition to an open subset. More precisely, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028061.png" /> the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028062.png" /> is canonically identified with the open (in the [[Zariski topology|Zariski topology]]) subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028063.png" /> consisting of the prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028064.png" /> not containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028065.png" />. Moreover, this operation makes it possible to associate with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028066.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028067.png" /> a quasi-coherent sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028068.png" /> on the affine scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028069.png" /> for which
| + | $$ |
| + | M [ S ^ {-} 1 ] = M \otimes _ {A} A [ S ^ {-} 1 ] . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028070.png" /></td> </tr></table>
| + | The transition from $ M $ |
| + | to $ M [ S ^ {-} 1 ] $ |
| + | is an exact functor. In other words, the $ A $- |
| + | module $ A [ S ^ {-} 1 ] $ |
| + | is flat. Localization commutes with direct sums and inductive limits. |
| | | |
− | Localization can be regarded as an operation that makes it possible to invert morphisms of multiplication by an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028071.png" /> in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060280/l06028072.png" />-modules. In this approach the operation of localization admits a wide generalization to arbitrary categories (see [[Localization in categories|Localization in categories]]). | + | From the geometrical point of view localization means transition to an open subset. More precisely, for $ s \in A $ |
| + | the spectrum $ \mathop{\rm Spec} A [ s ^ {-} 1 ] $ |
| + | is canonically identified with the open (in the [[Zariski topology|Zariski topology]]) subset $ D ( s) \subset \mathop{\rm Spec} A $ |
| + | consisting of the prime ideals $ \mathfrak P $ |
| + | not containing $ s $. |
| + | Moreover, this operation makes it possible to associate with each $ A $- |
| + | module $ M $ |
| + | a quasi-coherent sheaf $ \widetilde{M} $ |
| + | on the affine scheme $ \mathop{\rm Spec} A $ |
| + | for which |
| + | |
| + | $$ |
| + | \Gamma ( D ( s) , \widetilde{M} ) = M [ S ^ {-} 1 ] . |
| + | $$ |
| + | |
| + | Localization can be regarded as an operation that makes it possible to invert morphisms of multiplication by an $ s \in S $ |
| + | in the category of $ A $- |
| + | modules. In this approach the operation of localization admits a wide generalization to arbitrary categories (see [[Localization in categories|Localization in categories]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> |
A transition from a commutative ring $ A $
to the ring of fractions (cf. Fractions, ring of) $ A [ S ^ {-} 1 ] $,
where $ S $
is a subset of $ A $.
The ring $ A [ S ^ {-} 1 ] $
can be defined as the solution of the problem of a universal mapping from $ A $
into a ring under which all elements of $ S $
become invertible. However, there are explicit constructions for $ A [ S ^ {-} 1 ] $:
1) as the set of fractions of the form $ a / s $,
where $ a \in A $
and $ s $
is a product of elements of $ S $(
two fractions $ a / s $
and $ a ^ \prime / s ^ \prime $
are regarded as equivalent if and only if there is an $ s ^ {\prime\prime} $
that is a product of elements of $ S $
and is such that $ s ^ {\prime\prime} ( s a ^ \prime - s ^ \prime a ) = 0 $;
fractions are added and multiplied by the usual rules);
2) as the quotient ring of the ring of polynomials $ A [ X _ {s} ] $,
$ s \in S $,
with respect to the ideal generated by the polynomials $ s X _ {s} - 1 $,
$ s \in S $;
3) as the inductive limit of an inductive system of $ A $-
modules $ ( A _ {i} , \phi _ {ij} ) $,
where $ i $
runs through a naturally-ordered free commutative monoid $ N ^ {(} S) $.
All the $ A _ {i} $
are isomorphic to $ A $,
and the homomorphisms $ \phi _ {ij} : A _ {i} \rightarrow A _ {j} $
with $ j = i + n _ {1} s _ {1} + \dots + n _ {k} s _ {k} $
coincide with multiplication by $ s _ {1} ^ {n _ {1} } {} \dots s _ {k} ^ {n _ {k} } \in A $.
The ring $ A $
is canonically mapped into $ A [ S ^ {-} 1 ] $
and converts the latter into an $ A $-
algebra. This mapping $ A \rightarrow A [ S ^ {-} 1 ] $
is injective if and only if $ S $
does not contain any divisor of zero in $ A $.
On the other hand, if $ S $
contains a nilpotent element, then $ A [ S ^ {-} 1 ] = 0 $.
Without loss of generality the set $ S $
can be assumed to be closed with respect to products (such a set is known as multiplicative, or as a multiplicative system). In this case the ring $ A [ S ^ {-} 1 ] $
is also denoted by $ S ^ {-} 1 A $
or $ A _ {S} $.
The most important examples of multiplicative systems are the following:
a) the set $ \{ s ^ {n} \} $
of all powers of an element of $ A $;
b) the set $ A \setminus \mathfrak P $,
that is, the complement of a prime ideal $ \mathfrak P $.
The corresponding ring of fractions is local and is denoted by $ A _ {\mathfrak P } $;
c) the set $ R $
of all non-divisors of zero in $ A $.
The ring $ R ^ {-} 1 A $
is called the complete ring of fractions of $ A $.
If $ A $
is integral, then $ R ^ {-} 1 A = A _ {(} 0) $
is a field of fractions.
The operation of localization carries over with no difficulty to arbitrary $ A $-
modules $ M $
if one sets
$$
M [ S ^ {-} 1 ] = M \otimes _ {A} A [ S ^ {-} 1 ] .
$$
The transition from $ M $
to $ M [ S ^ {-} 1 ] $
is an exact functor. In other words, the $ A $-
module $ A [ S ^ {-} 1 ] $
is flat. Localization commutes with direct sums and inductive limits.
From the geometrical point of view localization means transition to an open subset. More precisely, for $ s \in A $
the spectrum $ \mathop{\rm Spec} A [ s ^ {-} 1 ] $
is canonically identified with the open (in the Zariski topology) subset $ D ( s) \subset \mathop{\rm Spec} A $
consisting of the prime ideals $ \mathfrak P $
not containing $ s $.
Moreover, this operation makes it possible to associate with each $ A $-
module $ M $
a quasi-coherent sheaf $ \widetilde{M} $
on the affine scheme $ \mathop{\rm Spec} A $
for which
$$
\Gamma ( D ( s) , \widetilde{M} ) = M [ S ^ {-} 1 ] .
$$
Localization can be regarded as an operation that makes it possible to invert morphisms of multiplication by an $ s \in S $
in the category of $ A $-
modules. In this approach the operation of localization admits a wide generalization to arbitrary categories (see Localization in categories).
References
[1] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |