Difference between revisions of "Invertible module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | i0524901.png | ||
| + | $#A+1 = 18 n = 0 | ||
| + | $#C+1 = 18 : ~/encyclopedia/old_files/data/I052/I.0502490 Invertible module | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| + | |||
| + | A [[Module|module]] $ M $ | ||
| + | over a [[Commutative ring|commutative ring]] $ A $ | ||
| + | for which there exists an $ A $- | ||
| + | module $ N $ | ||
| + | such that $ M \otimes N $ | ||
| + | is isomorphic to $ A $( | ||
| + | as an isomorphism of $ A $- | ||
| + | modules). A module $ M $ | ||
| + | is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $ A $. | ||
| + | The classes of isomorphic invertible modules form the Picard group of the ring $ A $; | ||
| + | the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $ A $. | ||
| + | In the non-commutative case, an $ ( A , B ) $- | ||
| + | bimodule, where $ A $ | ||
| + | and $ B $ | ||
| + | are associative rings, is called invertible if there exists a $ ( B , A ) $- | ||
| + | bimodule $ N $ | ||
| + | such that | ||
| + | |||
| + | $$ | ||
| + | M \otimes _ {B} N \simeq A \ \ | ||
| + | \textrm{ and } \ \ | ||
| + | N \otimes _ {A} M \simeq B . | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The Picard group of a non-commutative ring is a useful invariant in the theory of orders and | + | The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $ G $- |
| + | modules, cf. [[#References|[a1]]], [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" ''Proc. London Math. Soc.'' , '''180''' (1973) pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" ''Proc. London Math. Soc.'' , '''180''' (1973) pp. 405–434</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" ''Proc. London Math. Soc.'' , '''180''' (1973) pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" ''Proc. London Math. Soc.'' , '''180''' (1973) pp. 405–434</TD></TR></table> | ||
Revision as of 22:13, 5 June 2020
A module $ M $
over a commutative ring $ A $
for which there exists an $ A $-
module $ N $
such that $ M \otimes N $
is isomorphic to $ A $(
as an isomorphism of $ A $-
modules). A module $ M $
is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $ A $.
The classes of isomorphic invertible modules form the Picard group of the ring $ A $;
the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $ A $.
In the non-commutative case, an $ ( A , B ) $-
bimodule, where $ A $
and $ B $
are associative rings, is called invertible if there exists a $ ( B , A ) $-
bimodule $ N $
such that
$$ M \otimes _ {B} N \simeq A \ \ \textrm{ and } \ \ N \otimes _ {A} M \simeq B . $$
References
| [1] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |
| [2] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
Comments
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $ G $- modules, cf. [a1], [a2].
References
| [a1] | A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" Proc. London Math. Soc. , 180 (1973) pp. 1–45 |
| [a2] | A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" Proc. London Math. Soc. , 180 (1973) pp. 405–434 |
Invertible module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invertible_module&oldid=18662