Difference between revisions of "Hermite function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0469801.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/H046/H.0406980 Hermite function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A solution of the [[Hermite equation|Hermite equation]] | A solution of the [[Hermite equation|Hermite equation]] | ||
− | + | $$ | |
+ | w ^ {\prime\prime} - 2z w ^ \prime + 2 \lambda w = 0 . | ||
+ | $$ | ||
The Hermite functions have the form | The Hermite functions have the form | ||
− | + | $$ | |
+ | P _ \lambda ( z) = | ||
+ | \frac{1}{\pi i } | ||
+ | \int\limits _ {C _ {1} } \mathop{\rm exp} (- t | ||
+ | ^ {2} + 2zt ) t ^ {- \lambda - 1 } dt , | ||
+ | $$ | ||
− | + | $$ | |
+ | Q _ \lambda ( z) = | ||
+ | \frac{1}{\pi i } | ||
+ | \int\limits _ {C _ {2} } | ||
+ | \mathop{\rm exp} (- t ^ {2} + 2zt ) t ^ {- \lambda - 1 } dt , | ||
+ | $$ | ||
− | where | + | where $ C _ {1} $ |
+ | is the contour in the complex $ t $- | ||
+ | plane consisting of the rays $ ( - \infty , - a ) $ | ||
+ | and $ ( a , \infty ) $ | ||
+ | and the semi-circle $ | t | = a > 0 $, | ||
+ | $ \mathop{\rm Im} t \geq 0 $, | ||
+ | and $ C _ {2} = - C _ {1} $. | ||
+ | The half-sum of these solutions, | ||
− | + | $$ | |
+ | H _ \lambda ( z) = | ||
+ | \frac{P _ \lambda ( z) + Q _ \lambda ( z) }{2} | ||
+ | , | ||
+ | $$ | ||
− | for an integer | + | for an integer $ \lambda = n \geq 0 $, |
+ | is equal to the Hermite polynomial $ H _ {n} ( x) $( | ||
+ | cf. [[Hermite polynomials|Hermite polynomials]]). The name Hermite equation is also used for | ||
− | + | $$ | |
+ | y ^ {\prime\prime} - x y ^ \prime + \nu y = 0. | ||
+ | $$ | ||
− | When | + | When $ \nu $ |
+ | is an integer, this equation has the [[Fundamental system of solutions|fundamental system of solutions]] $ H _ \nu ( x) , h _ \nu ( x) $, | ||
+ | where $ H _ \nu ( x) $ | ||
+ | are the Hermite polynomials and $ h _ \nu ( x) $ | ||
+ | are the Hermite functions of the second kind, which can be expressed in terms of the [[Confluent hypergeometric function|confluent hypergeometric function]]: | ||
− | + | $$ | |
+ | h _ {2n} ( x) = (- 2) ^ {n} n! _ {1} F _ {1} \left ( - n + | ||
+ | \frac{1}{2} | ||
+ | ; | ||
+ | \frac{3}{2} | ||
+ | ; | ||
+ | \frac{x ^ {2} }{2} | ||
+ | \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | h _ {2n+} 1 ( x) = - (- 2) ^ {n} n! _ {1} F _ {1} \left ( - n | ||
+ | - | ||
+ | \frac{1}{2} | ||
+ | ; | ||
+ | \frac{1}{2} | ||
+ | ; | ||
+ | \frac{x ^ {2} }{2} | ||
+ | \right ) . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''1''' , Interscience (1953) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''1''' , Interscience (1953) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Hermite functions | + | The Hermite functions $ P _ \lambda $ |
+ | and $ Q _ \lambda $ | ||
+ | are related to the parabolic cylinder functions (cf. [[Parabolic cylinder function|Parabolic cylinder function]]). See [[#References|[a1]]], Sect. 4b for some further results concerning the functions $ H _ \nu , h _ \nu $ | ||
+ | when $ \nu $ | ||
+ | is a non-negative integer. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Durand, "Nicholson-type integrals for products of Gegenbauer functions and related topics" R.A. Askey (ed.) , ''Theory and Application of Special Functions'' , Acad. Press (1975) pp. 353–374</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Durand, "Nicholson-type integrals for products of Gegenbauer functions and related topics" R.A. Askey (ed.) , ''Theory and Application of Special Functions'' , Acad. Press (1975) pp. 353–374</TD></TR></table> |
Latest revision as of 22:10, 5 June 2020
A solution of the Hermite equation
$$ w ^ {\prime\prime} - 2z w ^ \prime + 2 \lambda w = 0 . $$
The Hermite functions have the form
$$ P _ \lambda ( z) = \frac{1}{\pi i } \int\limits _ {C _ {1} } \mathop{\rm exp} (- t ^ {2} + 2zt ) t ^ {- \lambda - 1 } dt , $$
$$ Q _ \lambda ( z) = \frac{1}{\pi i } \int\limits _ {C _ {2} } \mathop{\rm exp} (- t ^ {2} + 2zt ) t ^ {- \lambda - 1 } dt , $$
where $ C _ {1} $ is the contour in the complex $ t $- plane consisting of the rays $ ( - \infty , - a ) $ and $ ( a , \infty ) $ and the semi-circle $ | t | = a > 0 $, $ \mathop{\rm Im} t \geq 0 $, and $ C _ {2} = - C _ {1} $. The half-sum of these solutions,
$$ H _ \lambda ( z) = \frac{P _ \lambda ( z) + Q _ \lambda ( z) }{2} , $$
for an integer $ \lambda = n \geq 0 $, is equal to the Hermite polynomial $ H _ {n} ( x) $( cf. Hermite polynomials). The name Hermite equation is also used for
$$ y ^ {\prime\prime} - x y ^ \prime + \nu y = 0. $$
When $ \nu $ is an integer, this equation has the fundamental system of solutions $ H _ \nu ( x) , h _ \nu ( x) $, where $ H _ \nu ( x) $ are the Hermite polynomials and $ h _ \nu ( x) $ are the Hermite functions of the second kind, which can be expressed in terms of the confluent hypergeometric function:
$$ h _ {2n} ( x) = (- 2) ^ {n} n! _ {1} F _ {1} \left ( - n + \frac{1}{2} ; \frac{3}{2} ; \frac{x ^ {2} }{2} \right ) , $$
$$ h _ {2n+} 1 ( x) = - (- 2) ^ {n} n! _ {1} F _ {1} \left ( - n - \frac{1}{2} ; \frac{1}{2} ; \frac{x ^ {2} }{2} \right ) . $$
References
[1] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 1 , Interscience (1953) (Translated from German) |
[2] | A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960) |
Comments
The Hermite functions $ P _ \lambda $ and $ Q _ \lambda $ are related to the parabolic cylinder functions (cf. Parabolic cylinder function). See [a1], Sect. 4b for some further results concerning the functions $ H _ \nu , h _ \nu $ when $ \nu $ is a non-negative integer.
References
[a1] | L. Durand, "Nicholson-type integrals for products of Gegenbauer functions and related topics" R.A. Askey (ed.) , Theory and Application of Special Functions , Acad. Press (1975) pp. 353–374 |
Hermite function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hermite_function&oldid=18370