|
|
Line 1: |
Line 1: |
− | The set of all derived numbers (Dini derivatives, cf. [[Dini derivative|Dini derivative]]) of a given function of a complex variable at a given point. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647101.png" /> be a set in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647102.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647103.png" /> be a non-isolated point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647104.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647105.png" /> be a complex function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647106.png" />. A complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647107.png" /> (proper or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647108.png" />) is called a derived number (or Dini derivative) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647109.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471010.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471011.png" /> if there is a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471012.png" /> with the properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471014.png" />,
| + | <!-- |
| + | m0647101.png |
| + | $#A+1 = 84 n = 0 |
| + | $#C+1 = 84 : ~/encyclopedia/old_files/data/M064/M.0604710 Monogeneity set |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471015.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471016.png" /> of all derived numbers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471017.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471018.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471019.png" /> is called the monogeneity set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471020.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471021.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471022.png" /> (see [[#References|[1]]]). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471023.png" /> consists of a unique finite point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471024.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471025.png" /> is a [[Monogenic function|monogenic function]] at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471026.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471028.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471029.png" /> is always closed, and for each closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471030.png" /> in the extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471031.png" />, each set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471032.png" /> and each finite non-isolated point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471034.png" />, there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471036.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471038.png" /> is an interior point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471039.png" />, then for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471040.png" /> that is continuous in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471041.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471042.png" /> is closed and connected (a [[Continuum|continuum]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471043.png" /> and, conversely, for any continuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471044.png" /> there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471045.png" />, continuous in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471046.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471048.png" /> is differentiable with respect to the set of real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471049.png" /> at an interior point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471050.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471052.png" /> is the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471053.png" /> (possibly degenerating into a point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471054.png" />) with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471055.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471056.png" />, where | + | The set of all derived numbers (Dini derivatives, cf. [[Dini derivative|Dini derivative]]) of a given function of a complex variable at a given point. More precisely, let $ E $ |
| + | be a set in the complex plane $ \mathbf C $, |
| + | let $ \zeta $ |
| + | be a non-isolated point of $ E $ |
| + | and let $ f ( z) $ |
| + | be a complex function of $ z \in E $. |
| + | A complex number $ a $( |
| + | proper or equal to $ \infty $) |
| + | is called a derived number (or Dini derivative) of $ f $ |
| + | at $ \zeta $ |
| + | relative to $ E $ |
| + | if there is a sequence $ z _ {n} \in E $ |
| + | with the properties: $ z _ {n} \neq \zeta $, |
| + | $ z _ {n} \rightarrow \zeta $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471057.png" /></td> </tr></table>
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471058.png" /></td> </tr></table>
| + | \frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta } |
| | | |
− | are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471059.png" />, differentiable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471060.png" />, at a given interior point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471062.png" />.
| + | \rightarrow a \ \ |
| + | \textrm{ as } n \rightarrow \infty . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471063.png" /> is continuous in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471064.png" />, then at almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471065.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471066.png" /> is either a circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471068.png" />, or is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471069.png" /> (see [[#References|[2]]]). In the general case of an arbitrary (not necessarily measurable) set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471070.png" /> and an arbitrary (not necessarily measurable) finite function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471072.png" />, at almost every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471073.png" /> one of the following three cases holds: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471076.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471077.png" />; or c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471080.png" />. Here, a) holds at almost every differentiability point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471081.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471082.png" /> and one of the first two cases holds at almost every continuity point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471083.png" />. Each of the cases a)–c) may be realized individually at almost every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471084.png" />.
| + | The set $ \mathfrak M ( \zeta , f , E ) $ |
| + | of all derived numbers of $ f $ |
| + | at $ \zeta $ |
| + | relative to $ E $ |
| + | is called the monogeneity set of $ f $ |
| + | at $ \zeta $ |
| + | relative to $ E $( |
| + | see [[#References|[1]]]). The set $ \mathfrak M ( \zeta , f , E ) $ |
| + | consists of a unique finite point $ a $ |
| + | if and only if $ f ( z) $ |
| + | is a [[Monogenic function|monogenic function]] at $ \zeta $ |
| + | relative to $ E $ |
| + | and $ f _ {E} ^ { \prime } ( \zeta ) = a $. |
| + | The set $ \mathfrak M ( \zeta , f , E ) $ |
| + | is always closed, and for each closed set $ A $ |
| + | in the extended complex plane $ \overline{\mathbf C}\; $, |
| + | each set $ E \subset \mathbf C $ |
| + | and each finite non-isolated point $ \zeta $ |
| + | of $ E $, |
| + | there is a function $ f ( z) $, |
| + | $ z \in E $, |
| + | such that $ \mathfrak M ( \zeta , f , E ) = A $. |
| + | If $ \zeta $ |
| + | is an interior point of $ E $, |
| + | then for any function $ f ( z) $ |
| + | that is continuous in a neighbourhood of $ \zeta $, |
| + | the set $ \mathfrak M ( \zeta , f , E ) $ |
| + | is closed and connected (a [[Continuum|continuum]]) in $ \overline{\mathbf C}\; $ |
| + | and, conversely, for any continuum $ K \subset \overline{\mathbf C}\; $ |
| + | there is a function $ f ( z) $, |
| + | continuous in a neighbourhood of $ \zeta $, |
| + | for which $ \mathfrak M ( \zeta , f , E ) = K $. |
| + | If $ f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $ |
| + | is differentiable with respect to the set of real variables $ ( x , y ) $ |
| + | at an interior point $ \zeta = \xi + i \eta $ |
| + | of $ E $, |
| + | then $ \mathfrak M ( \zeta , f , E ) $ |
| + | is the circle $ \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $( |
| + | possibly degenerating into a point, $ r = 0 $) |
| + | with centre $ c = \partial f ( \zeta ) / \partial z $ |
| + | and radius $ r = | \partial f ( \zeta ) / \partial \overline{z}\; | $, |
| + | where |
| + | |
| + | $$ |
| + | |
| + | \frac{\partial f }{\partial z } |
| + | |
| + | = |
| + | \frac{1}{2} |
| + | |
| + | \left ( |
| + | |
| + | \frac{\partial f }{\partial x } |
| + | |
| + | - i |
| + | |
| + | \frac{\partial f }{\partial y } |
| + | |
| + | \right ) |
| + | = |
| + | \frac{1}{2} |
| + | |
| + | \left ( |
| + | |
| + | \frac{\partial u }{\partial x } |
| + | + |
| + | |
| + | \frac{\partial v }{\partial y } |
| + | |
| + | \right ) |
| + | + |
| + | \frac{i}{2} |
| + | |
| + | \left ( |
| + | |
| + | \frac{\partial v }{\partial x } |
| + | - |
| + | |
| + | \frac{\partial u }{\partial y } |
| + | |
| + | \right ) , |
| + | $$ |
| + | |
| + | $$ |
| + | |
| + | \frac{\partial f }{\partial \overline{z}\; } |
| + | = |
| + | \frac{1}{2} |
| + | \left ( |
| + | \frac{\partial |
| + | f }{\partial x } |
| + | + i |
| + | \frac{\partial f }{\partial y } |
| + | |
| + | \right ) = |
| + | \frac{1}{2} |
| + | \left ( |
| + | \frac{\partial u }{\partial |
| + | x } |
| + | - |
| + | \frac{\partial v }{\partial y } |
| + | \right ) + |
| + | \frac{i}{2} |
| + | \left ( |
| + | |
| + | \frac{\partial v }{\partial x } |
| + | + |
| + | \frac{\partial u }{\partial y } |
| + | \right ) |
| + | $$ |
| + | |
| + | are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function $ f $, |
| + | differentiable with respect to $ ( x , y ) $, |
| + | at a given interior point $ \zeta $ |
| + | of $ E $. |
| + | |
| + | If $ f ( z) $ |
| + | is continuous in a domain $ G $, |
| + | then at almost every $ \zeta \in G $ |
| + | the set $ \mathfrak M ( \zeta , f , G ) $ |
| + | is either a circle $ \gamma ( r , c ) $, |
| + | $ 0 \leq r < \infty $, |
| + | or is $ \overline{\mathbf C}\; $( |
| + | see [[#References|[2]]]). In the general case of an arbitrary (not necessarily measurable) set $ E $ |
| + | and an arbitrary (not necessarily measurable) finite function $ f ( z) $, |
| + | $ z \in E $, |
| + | at almost every point $ \zeta \in E $ |
| + | one of the following three cases holds: a) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $, |
| + | $ c \in \mathbf C $, |
| + | $ 0 \leq r < \infty $; |
| + | b) $ \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $; |
| + | or c) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $, |
| + | $ c \in \mathbf C $, |
| + | $ 0 \leq r < \infty $. |
| + | Here, a) holds at almost every differentiability point of $ f ( z) = f ( x + i y ) $ |
| + | with respect to $ ( x , y ) \in E $ |
| + | and one of the first two cases holds at almost every continuity point of $ f ( z) $. |
| + | Each of the cases a)–c) may be realized individually at almost every point $ \zeta \in E $. |
| | | |
| For some natural generalizations to the multi-dimensional case see [[#References|[4]]]. | | For some natural generalizations to the multi-dimensional case see [[#References|[4]]]. |
The set of all derived numbers (Dini derivatives, cf. Dini derivative) of a given function of a complex variable at a given point. More precisely, let $ E $
be a set in the complex plane $ \mathbf C $,
let $ \zeta $
be a non-isolated point of $ E $
and let $ f ( z) $
be a complex function of $ z \in E $.
A complex number $ a $(
proper or equal to $ \infty $)
is called a derived number (or Dini derivative) of $ f $
at $ \zeta $
relative to $ E $
if there is a sequence $ z _ {n} \in E $
with the properties: $ z _ {n} \neq \zeta $,
$ z _ {n} \rightarrow \zeta $,
$$
\frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta }
\rightarrow a \ \
\textrm{ as } n \rightarrow \infty .
$$
The set $ \mathfrak M ( \zeta , f , E ) $
of all derived numbers of $ f $
at $ \zeta $
relative to $ E $
is called the monogeneity set of $ f $
at $ \zeta $
relative to $ E $(
see [1]). The set $ \mathfrak M ( \zeta , f , E ) $
consists of a unique finite point $ a $
if and only if $ f ( z) $
is a monogenic function at $ \zeta $
relative to $ E $
and $ f _ {E} ^ { \prime } ( \zeta ) = a $.
The set $ \mathfrak M ( \zeta , f , E ) $
is always closed, and for each closed set $ A $
in the extended complex plane $ \overline{\mathbf C}\; $,
each set $ E \subset \mathbf C $
and each finite non-isolated point $ \zeta $
of $ E $,
there is a function $ f ( z) $,
$ z \in E $,
such that $ \mathfrak M ( \zeta , f , E ) = A $.
If $ \zeta $
is an interior point of $ E $,
then for any function $ f ( z) $
that is continuous in a neighbourhood of $ \zeta $,
the set $ \mathfrak M ( \zeta , f , E ) $
is closed and connected (a continuum) in $ \overline{\mathbf C}\; $
and, conversely, for any continuum $ K \subset \overline{\mathbf C}\; $
there is a function $ f ( z) $,
continuous in a neighbourhood of $ \zeta $,
for which $ \mathfrak M ( \zeta , f , E ) = K $.
If $ f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $
is differentiable with respect to the set of real variables $ ( x , y ) $
at an interior point $ \zeta = \xi + i \eta $
of $ E $,
then $ \mathfrak M ( \zeta , f , E ) $
is the circle $ \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $(
possibly degenerating into a point, $ r = 0 $)
with centre $ c = \partial f ( \zeta ) / \partial z $
and radius $ r = | \partial f ( \zeta ) / \partial \overline{z}\; | $,
where
$$
\frac{\partial f }{\partial z }
=
\frac{1}{2}
\left (
\frac{\partial f }{\partial x }
- i
\frac{\partial f }{\partial y }
\right )
=
\frac{1}{2}
\left (
\frac{\partial u }{\partial x }
+
\frac{\partial v }{\partial y }
\right )
+
\frac{i}{2}
\left (
\frac{\partial v }{\partial x }
-
\frac{\partial u }{\partial y }
\right ) ,
$$
$$
\frac{\partial f }{\partial \overline{z}\; }
=
\frac{1}{2}
\left (
\frac{\partial
f }{\partial x }
+ i
\frac{\partial f }{\partial y }
\right ) =
\frac{1}{2}
\left (
\frac{\partial u }{\partial
x }
-
\frac{\partial v }{\partial y }
\right ) +
\frac{i}{2}
\left (
\frac{\partial v }{\partial x }
+
\frac{\partial u }{\partial y }
\right )
$$
are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function $ f $,
differentiable with respect to $ ( x , y ) $,
at a given interior point $ \zeta $
of $ E $.
If $ f ( z) $
is continuous in a domain $ G $,
then at almost every $ \zeta \in G $
the set $ \mathfrak M ( \zeta , f , G ) $
is either a circle $ \gamma ( r , c ) $,
$ 0 \leq r < \infty $,
or is $ \overline{\mathbf C}\; $(
see [2]). In the general case of an arbitrary (not necessarily measurable) set $ E $
and an arbitrary (not necessarily measurable) finite function $ f ( z) $,
$ z \in E $,
at almost every point $ \zeta \in E $
one of the following three cases holds: a) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $,
$ c \in \mathbf C $,
$ 0 \leq r < \infty $;
b) $ \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $;
or c) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $,
$ c \in \mathbf C $,
$ 0 \leq r < \infty $.
Here, a) holds at almost every differentiability point of $ f ( z) = f ( x + i y ) $
with respect to $ ( x , y ) \in E $
and one of the first two cases holds at almost every continuity point of $ f ( z) $.
Each of the cases a)–c) may be realized individually at almost every point $ \zeta \in E $.
For some natural generalizations to the multi-dimensional case see [4].
References
[1] | V.S. Fedorov, "The work of N.N. Luzin on the theory of functions of a complex variable" Uspekhi Mat. Nauk , 7 : 2 (1952) pp. 7–16 (In Russian) |
[2] | Yu.Yu. Trokhimchuk, "Continuous mappings and monogeneity conditions" , Moscow (1963) (In Russian) |
[3] | E.P. Dolzhenko, "On the derived numbers of complex functions" Izv. Akad. Nauk SSSR Ser. Mat. , 26 (1962) pp. 347–360 (In Russian) |
[4] | A.V. Bondar, "Continuous operator conformal mappings" Ukr. Math. J. , 32 : 3 (1980) pp. 207–212 Ukrain. Mat. Zh. , 32 : 3 (1980) pp. 314–322 |