Difference between revisions of "Monogeneity set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0647101.png | ||
+ | $#A+1 = 84 n = 0 | ||
+ | $#C+1 = 84 : ~/encyclopedia/old_files/data/M064/M.0604710 Monogeneity set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | The set | + | The set of all derived numbers (Dini derivatives, cf. [[Dini derivative|Dini derivative]]) of a given function of a complex variable at a given point. More precisely, let $ E $ |
+ | be a set in the complex plane $ \mathbf C $, | ||
+ | let $ \zeta $ | ||
+ | be a non-isolated point of $ E $ | ||
+ | and let $ f ( z) $ | ||
+ | be a complex function of $ z \in E $. | ||
+ | A complex number $ a $( | ||
+ | proper or equal to $ \infty $) | ||
+ | is called a derived number (or Dini derivative) of $ f $ | ||
+ | at $ \zeta $ | ||
+ | relative to $ E $ | ||
+ | if there is a sequence $ z _ {n} \in E $ | ||
+ | with the properties: $ z _ {n} \neq \zeta $, | ||
+ | $ z _ {n} \rightarrow \zeta $, | ||
− | + | $$ | |
− | + | \frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta } | |
− | + | \rightarrow a \ \ | |
+ | \textrm{ as } n \rightarrow \infty . | ||
+ | $$ | ||
− | + | The set $ \mathfrak M ( \zeta , f , E ) $ | |
+ | of all derived numbers of $ f $ | ||
+ | at $ \zeta $ | ||
+ | relative to $ E $ | ||
+ | is called the monogeneity set of $ f $ | ||
+ | at $ \zeta $ | ||
+ | relative to $ E $( | ||
+ | see [[#References|[1]]]). The set $ \mathfrak M ( \zeta , f , E ) $ | ||
+ | consists of a unique finite point $ a $ | ||
+ | if and only if $ f ( z) $ | ||
+ | is a [[Monogenic function|monogenic function]] at $ \zeta $ | ||
+ | relative to $ E $ | ||
+ | and $ f _ {E} ^ { \prime } ( \zeta ) = a $. | ||
+ | The set $ \mathfrak M ( \zeta , f , E ) $ | ||
+ | is always closed, and for each closed set $ A $ | ||
+ | in the extended complex plane $ \overline{\mathbf C}\; $, | ||
+ | each set $ E \subset \mathbf C $ | ||
+ | and each finite non-isolated point $ \zeta $ | ||
+ | of $ E $, | ||
+ | there is a function $ f ( z) $, | ||
+ | $ z \in E $, | ||
+ | such that $ \mathfrak M ( \zeta , f , E ) = A $. | ||
+ | If $ \zeta $ | ||
+ | is an interior point of $ E $, | ||
+ | then for any function $ f ( z) $ | ||
+ | that is continuous in a neighbourhood of $ \zeta $, | ||
+ | the set $ \mathfrak M ( \zeta , f , E ) $ | ||
+ | is closed and connected (a [[Continuum|continuum]]) in $ \overline{\mathbf C}\; $ | ||
+ | and, conversely, for any continuum $ K \subset \overline{\mathbf C}\; $ | ||
+ | there is a function $ f ( z) $, | ||
+ | continuous in a neighbourhood of $ \zeta $, | ||
+ | for which $ \mathfrak M ( \zeta , f , E ) = K $. | ||
+ | If $ f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $ | ||
+ | is differentiable with respect to the set of real variables $ ( x , y ) $ | ||
+ | at an interior point $ \zeta = \xi + i \eta $ | ||
+ | of $ E $, | ||
+ | then $ \mathfrak M ( \zeta , f , E ) $ | ||
+ | is the circle $ \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $( | ||
+ | possibly degenerating into a point, $ r = 0 $) | ||
+ | with centre $ c = \partial f ( \zeta ) / \partial z $ | ||
+ | and radius $ r = | \partial f ( \zeta ) / \partial \overline{z}\; | $, | ||
+ | where | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \frac{\partial f }{\partial z } | ||
+ | |||
+ | = | ||
+ | \frac{1}{2} | ||
+ | |||
+ | \left ( | ||
+ | |||
+ | \frac{\partial f }{\partial x } | ||
+ | |||
+ | - i | ||
+ | |||
+ | \frac{\partial f }{\partial y } | ||
+ | |||
+ | \right ) | ||
+ | = | ||
+ | \frac{1}{2} | ||
+ | |||
+ | \left ( | ||
+ | |||
+ | \frac{\partial u }{\partial x } | ||
+ | + | ||
+ | |||
+ | \frac{\partial v }{\partial y } | ||
+ | |||
+ | \right ) | ||
+ | + | ||
+ | \frac{i}{2} | ||
+ | |||
+ | \left ( | ||
+ | |||
+ | \frac{\partial v }{\partial x } | ||
+ | - | ||
+ | |||
+ | \frac{\partial u }{\partial y } | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \frac{\partial f }{\partial \overline{z}\; } | ||
+ | = | ||
+ | \frac{1}{2} | ||
+ | \left ( | ||
+ | \frac{\partial | ||
+ | f }{\partial x } | ||
+ | + i | ||
+ | \frac{\partial f }{\partial y } | ||
+ | |||
+ | \right ) = | ||
+ | \frac{1}{2} | ||
+ | \left ( | ||
+ | \frac{\partial u }{\partial | ||
+ | x } | ||
+ | - | ||
+ | \frac{\partial v }{\partial y } | ||
+ | \right ) + | ||
+ | \frac{i}{2} | ||
+ | \left ( | ||
+ | |||
+ | \frac{\partial v }{\partial x } | ||
+ | + | ||
+ | \frac{\partial u }{\partial y } | ||
+ | \right ) | ||
+ | $$ | ||
+ | |||
+ | are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function $ f $, | ||
+ | differentiable with respect to $ ( x , y ) $, | ||
+ | at a given interior point $ \zeta $ | ||
+ | of $ E $. | ||
+ | |||
+ | If $ f ( z) $ | ||
+ | is continuous in a domain $ G $, | ||
+ | then at almost every $ \zeta \in G $ | ||
+ | the set $ \mathfrak M ( \zeta , f , G ) $ | ||
+ | is either a circle $ \gamma ( r , c ) $, | ||
+ | $ 0 \leq r < \infty $, | ||
+ | or is $ \overline{\mathbf C}\; $( | ||
+ | see [[#References|[2]]]). In the general case of an arbitrary (not necessarily measurable) set $ E $ | ||
+ | and an arbitrary (not necessarily measurable) finite function $ f ( z) $, | ||
+ | $ z \in E $, | ||
+ | at almost every point $ \zeta \in E $ | ||
+ | one of the following three cases holds: a) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $, | ||
+ | $ c \in \mathbf C $, | ||
+ | $ 0 \leq r < \infty $; | ||
+ | b) $ \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $; | ||
+ | or c) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $, | ||
+ | $ c \in \mathbf C $, | ||
+ | $ 0 \leq r < \infty $. | ||
+ | Here, a) holds at almost every differentiability point of $ f ( z) = f ( x + i y ) $ | ||
+ | with respect to $ ( x , y ) \in E $ | ||
+ | and one of the first two cases holds at almost every continuity point of $ f ( z) $. | ||
+ | Each of the cases a)–c) may be realized individually at almost every point $ \zeta \in E $. | ||
For some natural generalizations to the multi-dimensional case see [[#References|[4]]]. | For some natural generalizations to the multi-dimensional case see [[#References|[4]]]. |
Latest revision as of 08:01, 6 June 2020
The set of all derived numbers (Dini derivatives, cf. Dini derivative) of a given function of a complex variable at a given point. More precisely, let $ E $
be a set in the complex plane $ \mathbf C $,
let $ \zeta $
be a non-isolated point of $ E $
and let $ f ( z) $
be a complex function of $ z \in E $.
A complex number $ a $(
proper or equal to $ \infty $)
is called a derived number (or Dini derivative) of $ f $
at $ \zeta $
relative to $ E $
if there is a sequence $ z _ {n} \in E $
with the properties: $ z _ {n} \neq \zeta $,
$ z _ {n} \rightarrow \zeta $,
$$ \frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta } \rightarrow a \ \ \textrm{ as } n \rightarrow \infty . $$
The set $ \mathfrak M ( \zeta , f , E ) $ of all derived numbers of $ f $ at $ \zeta $ relative to $ E $ is called the monogeneity set of $ f $ at $ \zeta $ relative to $ E $( see [1]). The set $ \mathfrak M ( \zeta , f , E ) $ consists of a unique finite point $ a $ if and only if $ f ( z) $ is a monogenic function at $ \zeta $ relative to $ E $ and $ f _ {E} ^ { \prime } ( \zeta ) = a $. The set $ \mathfrak M ( \zeta , f , E ) $ is always closed, and for each closed set $ A $ in the extended complex plane $ \overline{\mathbf C}\; $, each set $ E \subset \mathbf C $ and each finite non-isolated point $ \zeta $ of $ E $, there is a function $ f ( z) $, $ z \in E $, such that $ \mathfrak M ( \zeta , f , E ) = A $. If $ \zeta $ is an interior point of $ E $, then for any function $ f ( z) $ that is continuous in a neighbourhood of $ \zeta $, the set $ \mathfrak M ( \zeta , f , E ) $ is closed and connected (a continuum) in $ \overline{\mathbf C}\; $ and, conversely, for any continuum $ K \subset \overline{\mathbf C}\; $ there is a function $ f ( z) $, continuous in a neighbourhood of $ \zeta $, for which $ \mathfrak M ( \zeta , f , E ) = K $. If $ f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $ is differentiable with respect to the set of real variables $ ( x , y ) $ at an interior point $ \zeta = \xi + i \eta $ of $ E $, then $ \mathfrak M ( \zeta , f , E ) $ is the circle $ \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $( possibly degenerating into a point, $ r = 0 $) with centre $ c = \partial f ( \zeta ) / \partial z $ and radius $ r = | \partial f ( \zeta ) / \partial \overline{z}\; | $, where
$$ \frac{\partial f }{\partial z } = \frac{1}{2} \left ( \frac{\partial f }{\partial x } - i \frac{\partial f }{\partial y } \right ) = \frac{1}{2} \left ( \frac{\partial u }{\partial x } + \frac{\partial v }{\partial y } \right ) + \frac{i}{2} \left ( \frac{\partial v }{\partial x } - \frac{\partial u }{\partial y } \right ) , $$
$$ \frac{\partial f }{\partial \overline{z}\; } = \frac{1}{2} \left ( \frac{\partial f }{\partial x } + i \frac{\partial f }{\partial y } \right ) = \frac{1}{2} \left ( \frac{\partial u }{\partial x } - \frac{\partial v }{\partial y } \right ) + \frac{i}{2} \left ( \frac{\partial v }{\partial x } + \frac{\partial u }{\partial y } \right ) $$
are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function $ f $, differentiable with respect to $ ( x , y ) $, at a given interior point $ \zeta $ of $ E $.
If $ f ( z) $ is continuous in a domain $ G $, then at almost every $ \zeta \in G $ the set $ \mathfrak M ( \zeta , f , G ) $ is either a circle $ \gamma ( r , c ) $, $ 0 \leq r < \infty $, or is $ \overline{\mathbf C}\; $( see [2]). In the general case of an arbitrary (not necessarily measurable) set $ E $ and an arbitrary (not necessarily measurable) finite function $ f ( z) $, $ z \in E $, at almost every point $ \zeta \in E $ one of the following three cases holds: a) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $, $ c \in \mathbf C $, $ 0 \leq r < \infty $; b) $ \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $; or c) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $, $ c \in \mathbf C $, $ 0 \leq r < \infty $. Here, a) holds at almost every differentiability point of $ f ( z) = f ( x + i y ) $ with respect to $ ( x , y ) \in E $ and one of the first two cases holds at almost every continuity point of $ f ( z) $. Each of the cases a)–c) may be realized individually at almost every point $ \zeta \in E $.
For some natural generalizations to the multi-dimensional case see [4].
References
[1] | V.S. Fedorov, "The work of N.N. Luzin on the theory of functions of a complex variable" Uspekhi Mat. Nauk , 7 : 2 (1952) pp. 7–16 (In Russian) |
[2] | Yu.Yu. Trokhimchuk, "Continuous mappings and monogeneity conditions" , Moscow (1963) (In Russian) |
[3] | E.P. Dolzhenko, "On the derived numbers of complex functions" Izv. Akad. Nauk SSSR Ser. Mat. , 26 (1962) pp. 347–360 (In Russian) |
[4] | A.V. Bondar, "Continuous operator conformal mappings" Ukr. Math. J. , 32 : 3 (1980) pp. 207–212 Ukrain. Mat. Zh. , 32 : 3 (1980) pp. 314–322 |
Monogeneity set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monogeneity_set&oldid=18192