|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809501.png" />''
| + | <!-- |
| + | r0809501.png |
| + | $#A+1 = 43 n = 0 |
| + | $#C+1 = 43 : ~/encyclopedia/old_files/data/R080/R.0800950 Regulator of an algebraic number field |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809502.png" /> that is, by definition, equal to 1 if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809503.png" /> is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809504.png" /> or an imaginary quadratic extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809505.png" />, and to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809506.png" /> in all other cases, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809507.png" /> is the rank of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809508.png" /> of units of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r0809509.png" /> (see [[Algebraic number|Algebraic number]]; [[Algebraic number theory|Algebraic number theory]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095010.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095011.png" />-dimensional volume of the basic parallelepipedon of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095012.png" />-dimensional lattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095013.png" /> that is the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095014.png" /> under its logarithmic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095015.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095016.png" />. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095017.png" /> is defined as follows: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095018.png" /> be all real and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095019.png" /> be all pairwise complex non-conjugate isomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095020.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095021.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095022.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095023.png" /> (see [[Dirichlet theorem|Dirichlet theorem]] on units), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095024.png" /> is defined by the formula
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095025.png" /></td> </tr></table>
| + | '' $ K $'' |
| + | |
| + | The number $ R _ {K} $ |
| + | that is, by definition, equal to 1 if $ K $ |
| + | is the field $ \mathbf Q $ |
| + | or an imaginary quadratic extension of $ \mathbf Q $, |
| + | and to $ v/ \sqrt r+ 1 $ |
| + | in all other cases, where $ r $ |
| + | is the rank of the group $ E $ |
| + | of units of the field $ K $( |
| + | see [[Algebraic number|Algebraic number]]; [[Algebraic number theory|Algebraic number theory]]) and $ v $ |
| + | is the $ r $- |
| + | dimensional volume of the basic parallelepipedon of the $ r $- |
| + | dimensional lattice in $ \mathbf R ^ {r+} 1 $ |
| + | that is the image of $ E $ |
| + | under its logarithmic mapping $ l $ |
| + | into $ \mathbf R ^ {r+} 1 $. |
| + | The homomorphism $ l $ |
| + | is defined as follows: Let $ \sigma _ {1} \dots \sigma _ {s} $ |
| + | be all real and let $ \sigma _ {s+} 1 \dots \sigma _ {s+} t $ |
| + | be all pairwise complex non-conjugate isomorphisms of $ K $ |
| + | into $ \mathbf C $; |
| + | $ s + 2t = \mathop{\rm dim} _ {\mathbf Q} K $. |
| + | Then $ r+ 1 = s+ t $( |
| + | see [[Dirichlet theorem|Dirichlet theorem]] on units), and $ l: E \rightarrow \mathbf R ^ {r+} 1 $ |
| + | is defined by the formula |
| + | |
| + | $$ |
| + | l( \alpha ) = ( l _ {1} ( \alpha ) \dots l _ {s+} t ( \alpha )), |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095026.png" /></td> </tr></table>
| + | $$ |
| + | l _ {i} ( \alpha ) = \left \{ |
| | | |
− | The image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095027.png" /> under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095028.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095029.png" />-dimensional lattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095030.png" /> lying in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095031.png" /> (where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095032.png" /> are the canonical coordinates). | + | The image of $ E $ |
| + | under $ l $ |
| + | is an $ r $- |
| + | dimensional lattice in $ \mathbf R ^ {r+} 1 $ |
| + | lying in the plane $ \sum _ {i=} 0 ^ {r+} 1 x _ {i} = 0 $( |
| + | where the $ x _ {i} $ |
| + | are the canonical coordinates). |
| | | |
− | Units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095033.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095034.png" /> form a basis of the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095035.png" /> are known as fundamental units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095036.png" />, and | + | Units $ \epsilon _ {1} \dots \epsilon _ {r} $ |
| + | for which $ l( e _ {1} ) \dots l( e _ {r} ) $ |
| + | form a basis of the lattice $ l( E) $ |
| + | are known as fundamental units of $ K $, |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095037.png" /></td> </tr></table>
| + | $$ |
| + | R _ {K} = \| \mathop{\rm det} ( l _ {i} ( \epsilon _ {j} )) _ {i,j= 1 } ^ {r} |
| + | \| . |
| + | $$ |
| | | |
− | There are other formulas linking the regulator with other invariants of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095038.png" /> (see, for example, [[Discriminant|Discriminant]], 3). | + | There are other formulas linking the regulator with other invariants of the field $ K $( |
| + | see, for example, [[Discriminant|Discriminant]], 3). |
| | | |
− | If instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095039.png" /> one considers the intersection of this group with an order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095041.png" />, then the regulator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095042.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080950/r08095043.png" /> can be defined in the same way. | + | If instead of $ E $ |
| + | one considers the intersection of this group with an order $ {\mathcal O} $ |
| + | of $ K $, |
| + | then the regulator $ R _ {\mathcal O} $ |
| + | of $ {\mathcal O} $ |
| + | can be defined in the same way. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR></table> |
$ K $
The number $ R _ {K} $
that is, by definition, equal to 1 if $ K $
is the field $ \mathbf Q $
or an imaginary quadratic extension of $ \mathbf Q $,
and to $ v/ \sqrt r+ 1 $
in all other cases, where $ r $
is the rank of the group $ E $
of units of the field $ K $(
see Algebraic number; Algebraic number theory) and $ v $
is the $ r $-
dimensional volume of the basic parallelepipedon of the $ r $-
dimensional lattice in $ \mathbf R ^ {r+} 1 $
that is the image of $ E $
under its logarithmic mapping $ l $
into $ \mathbf R ^ {r+} 1 $.
The homomorphism $ l $
is defined as follows: Let $ \sigma _ {1} \dots \sigma _ {s} $
be all real and let $ \sigma _ {s+} 1 \dots \sigma _ {s+} t $
be all pairwise complex non-conjugate isomorphisms of $ K $
into $ \mathbf C $;
$ s + 2t = \mathop{\rm dim} _ {\mathbf Q} K $.
Then $ r+ 1 = s+ t $(
see Dirichlet theorem on units), and $ l: E \rightarrow \mathbf R ^ {r+} 1 $
is defined by the formula
$$
l( \alpha ) = ( l _ {1} ( \alpha ) \dots l _ {s+} t ( \alpha )),
$$
where
$$
l _ {i} ( \alpha ) = \left \{
The image of $ E $
under $ l $
is an $ r $-
dimensional lattice in $ \mathbf R ^ {r+} 1 $
lying in the plane $ \sum _ {i=} 0 ^ {r+} 1 x _ {i} = 0 $(
where the $ x _ {i} $
are the canonical coordinates).
Units $ \epsilon _ {1} \dots \epsilon _ {r} $
for which $ l( e _ {1} ) \dots l( e _ {r} ) $
form a basis of the lattice $ l( E) $
are known as fundamental units of $ K $,
and
$$
R _ {K} = \| \mathop{\rm det} ( l _ {i} ( \epsilon _ {j} )) _ {i,j= 1 } ^ {r}
\| .
$$
There are other formulas linking the regulator with other invariants of the field $ K $(
see, for example, Discriminant, 3).
If instead of $ E $
one considers the intersection of this group with an order $ {\mathcal O} $
of $ K $,
then the regulator $ R _ {\mathcal O} $
of $ {\mathcal O} $
can be defined in the same way.
References
[1] | Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966) |
[2] | S. Lang, "Algebraic number theory" , Addison-Wesley (1970) |