Difference between revisions of "Positive variation of a function"
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | + | {{MSC|26A45}} | |
− | is | + | [[Category:Analysis]] |
+ | |||
+ | {{TEX|done}} | ||
+ | |||
+ | Also called ''positive increment of a function'' | ||
+ | |||
+ | One of the two terms whose sum is the complete increment or [[Variation of a function|variation of a function]] $f$ on a given interval. | ||
+ | |||
+ | '''Definition''' | ||
+ | Consider an interval $I=[a,b]\subset \mathbb R$ and the collection $\Pi$ of ordered $(N+1)$-ples of points $a_1<a_2 < \ldots < a_{N+1}\in I$, | ||
+ | where $N$ is an arbitrary natural number. The negative variation of a function $f: I\to \mathbb R$ is given by | ||
+ | \[ | ||
+ | TV^+ (f) := \sup \left\{ \sum_{i=1}^N \max \{(f(a_{i+1})-f(a_i)), 0\} : (a_1, \ldots, a_{N+1})\in\Pi\right\}\, . | ||
+ | \] | ||
+ | |||
+ | The concept of positive variation of a function was introduced by C. Jordan in {{Cite|Jo}} and it is used to prove the [[Jordan decomposition (of a function)|Jordan decomposition]] of a [[Function of bounded variation|function of bounded variation]]. See also [[Negative variation of a function|Negative variation of a function]] and [[Variation of a function|Variation of a function]]. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|AFP}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Co}}|| D. L. Cohn, "Measure theory". Birkhäuser, Boston 1993. | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Jo}}|| C. Jordan, "Sur la série de Fourier" ''C.R. Acad. Sci. Paris'' , '''92''' (1881) pp. 228–230 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Le}}|| H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives", Gauthier-Villars (1928). | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ro}}|| H.L. Royden, "Real analysis" , Macmillan (1969). {{MR|0151555}} {{ZBL|0197.03501}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 08:46, 16 September 2012
2020 Mathematics Subject Classification: Primary: 26A45 [MSN][ZBL]
Also called positive increment of a function
One of the two terms whose sum is the complete increment or variation of a function $f$ on a given interval.
Definition Consider an interval $I=[a,b]\subset \mathbb R$ and the collection $\Pi$ of ordered $(N+1)$-ples of points $a_1<a_2 < \ldots < a_{N+1}\in I$, where $N$ is an arbitrary natural number. The negative variation of a function $f: I\to \mathbb R$ is given by \[ TV^+ (f) := \sup \left\{ \sum_{i=1}^N \max \{(f(a_{i+1})-f(a_i)), 0\} : (a_1, \ldots, a_{N+1})\in\Pi\right\}\, . \]
The concept of positive variation of a function was introduced by C. Jordan in [Jo] and it is used to prove the Jordan decomposition of a function of bounded variation. See also Negative variation of a function and Variation of a function.
References
[AFP] | L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001 |
[Co] | D. L. Cohn, "Measure theory". Birkhäuser, Boston 1993. |
[Jo] | C. Jordan, "Sur la série de Fourier" C.R. Acad. Sci. Paris , 92 (1881) pp. 228–230 |
[Le] | H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives", Gauthier-Villars (1928). |
[Ro] | H.L. Royden, "Real analysis" , Macmillan (1969). MR0151555 Zbl 0197.03501 |
Positive variation of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive_variation_of_a_function&oldid=17036