Namespaces
Variants
Actions

Difference between revisions of "Postnikov square"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Cohomology operation|cohomology operation]] of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740701.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740702.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740703.png" /> are Abelian groups with a fixed heteromorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740704.png" />, i.e. a mapping such that the function
+
<!--
 +
p0740701.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/P074/P.0704070 Postnikov square
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740705.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is bilinear and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740706.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740707.png" /> be an epimorphism and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740708.png" /> be a free Abelian group. The Postnikov square for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740709.png" />-cocycles is defined by the formula
+
A [[Cohomology operation|cohomology operation]] of type  $  0 ( 1 , A , 3 , B ) $,
 +
where  $  A $
 +
and $  B $
 +
are Abelian groups with a fixed heteromorphism  $  \eta : A \rightarrow B $,
 +
i.e. a mapping such that the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407010.png" /></td> </tr></table>
+
$$
 +
h ( g _ {1} , g _ {2} )  = \eta ( g _ {1} + g _ {2} ) - \eta
 +
( g _ {1} ) - \eta ( g _ {2} )
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407011.png" /> is a cochain with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407013.png" />. A [[Suspension|suspension]] of a Postnikov square is a [[Pontryagin square|Pontryagin square]]. For a simply-connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407014.png" />, the Postnikov square for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407017.png" /> is defined by composition with the Hopf mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407018.png" /> is used to classify the mappings of three-dimensional polyhedra into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p07407019.png" />. Postnikov squares were introduced by M.M. Postnikov [[#References|[1]]].
+
is bilinear and  $  \eta ( - g ) = \eta ( g) $.
 +
Let  $  \xi :  F \rightarrow A $
 +
be an epimorphism and let  $  F = \oplus \mathbf Z $
 +
be a free Abelian group. The Postnikov square for  $  1 $-
 +
cocycles is defined by the formula
 +
 
 +
$$
 +
e  ^ {1}  \rightarrow  \widetilde \eta  \widetilde \xi  ( e _ {0}  ^ {1} \cup
 +
\delta e _ {0}  ^ {1} ) ,
 +
$$
 +
 
 +
where  $  e _ {0}  ^ {1} $
 +
is a cochain with coefficients in $  F $
 +
such that $  \xi e _ {0}  ^ {1} = e  ^ {1} $.  
 +
A [[Suspension|suspension]] of a Postnikov square is a [[Pontryagin square|Pontryagin square]]. For a simply-connected space $  X $,  
 +
the Postnikov square for which $  A = \pi _ {2} ( X) $,  
 +
$  B = \pi _ {3} ( X) $
 +
and $  \eta $
 +
is defined by composition with the Hopf mapping $  S  ^ {3} \rightarrow S  ^ {2} $
 +
is used to classify the mappings of three-dimensional polyhedra into $  X $.  
 +
Postnikov squares were introduced by M.M. Postnikov [[#References|[1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.M. Postnikov,  "The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension"  ''Dokl. Akad. Nauk SSSR'' , '''64''' :  4  (1949)  pp. 461–462  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.M. Postnikov,  "The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension"  ''Dokl. Akad. Nauk SSSR'' , '''64''' :  4  (1949)  pp. 461–462  (In Russian)</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


A cohomology operation of type $ 0 ( 1 , A , 3 , B ) $, where $ A $ and $ B $ are Abelian groups with a fixed heteromorphism $ \eta : A \rightarrow B $, i.e. a mapping such that the function

$$ h ( g _ {1} , g _ {2} ) = \eta ( g _ {1} + g _ {2} ) - \eta ( g _ {1} ) - \eta ( g _ {2} ) $$

is bilinear and $ \eta ( - g ) = \eta ( g) $. Let $ \xi : F \rightarrow A $ be an epimorphism and let $ F = \oplus \mathbf Z $ be a free Abelian group. The Postnikov square for $ 1 $- cocycles is defined by the formula

$$ e ^ {1} \rightarrow \widetilde \eta \widetilde \xi ( e _ {0} ^ {1} \cup \delta e _ {0} ^ {1} ) , $$

where $ e _ {0} ^ {1} $ is a cochain with coefficients in $ F $ such that $ \xi e _ {0} ^ {1} = e ^ {1} $. A suspension of a Postnikov square is a Pontryagin square. For a simply-connected space $ X $, the Postnikov square for which $ A = \pi _ {2} ( X) $, $ B = \pi _ {3} ( X) $ and $ \eta $ is defined by composition with the Hopf mapping $ S ^ {3} \rightarrow S ^ {2} $ is used to classify the mappings of three-dimensional polyhedra into $ X $. Postnikov squares were introduced by M.M. Postnikov [1].

References

[1] M.M. Postnikov, "The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension" Dokl. Akad. Nauk SSSR , 64 : 4 (1949) pp. 461–462 (In Russian)
How to Cite This Entry:
Postnikov square. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Postnikov_square&oldid=16646
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article