Difference between revisions of "Modular group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0644401.png | ||
+ | $#A+1 = 67 n = 0 | ||
+ | $#C+1 = 67 : ~/encyclopedia/old_files/data/M064/M.0604440 Modular group | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The group $ \Gamma $ | |
+ | of all fractional-linear transformations $ \gamma $ | ||
+ | of the form | ||
− | + | $$ \tag{1 } | |
+ | z \rightarrow \gamma ( z) = \ | ||
− | + | \frac{a z + b }{c z + d } | |
+ | ,\ \ | ||
+ | a d - b c = 1 , | ||
+ | $$ | ||
− | + | where $ a , b , c , d $ | |
+ | are rational integers. The modular group can be identified with the quotient group $ \mathop{\rm SL} _ {2} ( \mathbf Z ) / \{ \pm E \} $, | ||
+ | where | ||
− | + | $$ | |
+ | E = \left ( | ||
− | + | and is a [[Discrete subgroup|discrete subgroup]] in the [[Lie group|Lie group]] $ \mathop{\rm PSL} _ {2} ( \mathbf R ) = \mathop{\rm SL} _ {2} ( \mathbf R ) / \{ \pm E \} $. | |
+ | Here $ \mathop{\rm SL} _ {2} ( \mathbf R ) $( | ||
+ | respectively, $ \mathop{\rm SL} _ {2} ( \mathbf Z ) $) | ||
+ | is the group of matrices | ||
− | + | $$ | |
+ | \left ( | ||
− | + | with $ a , b , c , d $ | |
+ | real numbers (respectively, integers) and $ ad - bc = 1 $. | ||
+ | The modular group is a [[Discrete group of transformations|discrete group of transformations]] of the complex upper half-plane $ H = \{ {z = x + iy } : {y > 0 } \} $( | ||
+ | sometimes called the Lobachevskii plane or Poincaré upper half-plane) and has a presentation with generators $ T : z \rightarrow z + 1 $ | ||
+ | and $ S : z \rightarrow - 1 / z $, | ||
+ | and relations $ S ^ {2} = ( ST) ^ {3} = 1 $, | ||
+ | that is, it is the free product of the cyclic group of order 2 generated by $ S $ | ||
+ | and the cyclic group of order 3 generated by $ ST $( | ||
+ | see [[#References|[2]]]). | ||
− | + | Interest in the modular group is related to the study of modular functions (cf. [[Modular function|Modular function]]) whose Riemann surfaces (cf. [[Riemann surface|Riemann surface]]) are quotient spaces of $ H / \Gamma $, | |
+ | identified with a fundamental domain $ G $ | ||
+ | of the modular group. The compactification $ X _ \Gamma = ( H / \Gamma ) \cup \infty $ | ||
+ | is analytically isomorphic to the complex projective line, where the isomorphism is given by the fundamental modular function $ J ( z) $. | ||
+ | The fundamental domain $ G $ | ||
+ | has finite Lobachevskii area: | ||
− | + | $$ | |
+ | \int\limits _ { G } y ^ {-} 2 d x d y = | ||
+ | \frac \pi {3} | ||
+ | , | ||
+ | $$ | ||
− | + | that is, the modular group is a [[Fuchsian group|Fuchsian group]] of the first kind (see [[#References|[3]]]). For the lattice $ L = \mathbf Z + \mathbf Z z $, | |
+ | $ z \in H $, | ||
+ | the lattice $ L _ {1} = \mathbf Z + \mathbf Z \gamma ( z) $, | ||
− | + | $$ | |
+ | \gamma = \ | ||
+ | \left ( | ||
− | Corresponding to each subgroup | + | is equivalent to $ L $, |
+ | that is, can be obtained from $ L $ | ||
+ | by multiplying the elements of the latter by a non-zero complex number $ \lambda $, | ||
+ | $ \lambda = ( c z + d ) ^ {-} 1 $. | ||
+ | |||
+ | Corresponding to each lattice there is a complex torus $ \mathbf C / L $ | ||
+ | that is analytically equivalent to a non-singular cubic curve (an [[Elliptic curve|elliptic curve]]). This gives a one-to-one correspondence between the points of the quotient space $ H / \Gamma $, | ||
+ | classes of equivalent lattices and the classes of (analytically) equivalent elliptic curves (see [[#References|[3]]]). | ||
+ | |||
+ | The investigation of the subgroups of the modular group is of interest in the theory of modular forms and algebraic curves (cf. [[Algebraic curve|Algebraic curve]]; [[Modular form|Modular form]]). The principal congruence subgroup $ \Gamma ( N) $ | ||
+ | of level $ N \geq 1 $( | ||
+ | $ N $ | ||
+ | an integer) is the group of transformations $ \gamma ( z) $ | ||
+ | of the form (1) for which $ a \equiv d \equiv 1 $( | ||
+ | $ \mathop{\rm mod} N $), | ||
+ | $ c \equiv b \equiv 0 $( | ||
+ | $ \mathop{\rm mod} N $). | ||
+ | A subgroup $ \widetilde \Gamma \subset \Gamma $ | ||
+ | is called a congruence subgroup if $ \widetilde \Gamma \supset \Gamma ( N) $ | ||
+ | for some $ N $; | ||
+ | the least such $ N $ | ||
+ | is called the level of $ \widetilde \Gamma $. | ||
+ | Examples of congruence subgroups of level $ N $ | ||
+ | are: the group $ \Gamma _ {0} ( N) $ | ||
+ | of transformations (1) with $ c $ | ||
+ | divisible by $ N $, | ||
+ | and the group $ \Gamma _ {1} ( N) $ | ||
+ | of transformations (1) with $ a \equiv d \equiv 1 $( | ||
+ | $ \mathop{\rm mod} N $) | ||
+ | and $ c \equiv 0 $( | ||
+ | $ \mathop{\rm mod} N $). | ||
+ | The [[Index|index]] of $ \Gamma ( N) $ | ||
+ | in the modular group is $ ( N ^ {3} / 2 ) \prod _ {p \mid N } ( 1 - p ^ {-} 2 ) $ | ||
+ | if $ N > 2 $, | ||
+ | $ p $ | ||
+ | is a prime number, and 6 if $ N = 2 $; | ||
+ | thus, each congruence subgroup has finite index in the modular group. | ||
+ | |||
+ | Corresponding to each subgroup $ \widetilde \Gamma $ | ||
+ | of finite index in the modular group there is a complete algebraic curve $ X _ {\widetilde \Gamma } $( | ||
+ | a [[Modular curve|modular curve]]), obtained from the quotient space $ H / \widetilde \Gamma $ | ||
+ | and the covering $ X _ {\widetilde \Gamma } \rightarrow X _ \Gamma $. | ||
+ | The study of the branches of this covering allows one to find generators and relations for the congruence subgroup $ \widetilde \Gamma $, | ||
+ | the genus of $ X _ {\widetilde \Gamma } $ | ||
+ | and to prove that there are subgroups of finite index in the modular group which are not congruence subgroups (see [[#References|[3]]], [[#References|[8]]], [[#References|[7]]], Vol. 2). The study of presentations of the modular group was initiated in work (see [[#References|[4]]], [[#References|[6]]]) connected with the theory of modular forms. Such presentations were intensively studied within the theory of automorphic forms (see [[#References|[7]]] and [[Automorphic form|Automorphic form]]). Many results related to the modular group have been transferred to the case of arithmetic subgroups of algebraic Lie groups (cf. [[Arithmetic group|Arithmetic group]]; [[Lie algebra, algebraic|Lie algebra, algebraic]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer (1964) pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "A course in arithmetic" , Springer (1973) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Shimura, "Introduction to the arithmetic theory of automorphic functions" , Math. Soc. Japan (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hecke, "Analytische Arithmetik der positiven quadratischen Formen" , ''Mathematische Werke'' , Vandenhoeck & Ruprecht (1959) pp. 789–918</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> F. Klein, R. Fricke, "Vorlesungen über die Theorie der elliptischen Modulfunktionen" , '''1–2''' , Teubner (1890–1892)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H.D. Kloosterman, "The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups I, II" ''Ann. of Math.'' , '''47''' (1946) pp. 317–375; 376–417</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.-P. Serre (ed.) P. Deligne (ed.) W. Kuyk (ed.) , ''Modular functions of one variable. 1–6'' , ''Lect. notes in math.'' , '''320; 349; 350; 476; 601; 627''' , Springer (1973–1977)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.A. Rankin, "Modular forms and functions" , Cambridge Univ. Press (1977)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer (1964) pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "A course in arithmetic" , Springer (1973) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Shimura, "Introduction to the arithmetic theory of automorphic functions" , Math. Soc. Japan (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hecke, "Analytische Arithmetik der positiven quadratischen Formen" , ''Mathematische Werke'' , Vandenhoeck & Ruprecht (1959) pp. 789–918</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> F. Klein, R. Fricke, "Vorlesungen über die Theorie der elliptischen Modulfunktionen" , '''1–2''' , Teubner (1890–1892)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H.D. Kloosterman, "The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups I, II" ''Ann. of Math.'' , '''47''' (1946) pp. 317–375; 376–417</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.-P. Serre (ed.) P. Deligne (ed.) W. Kuyk (ed.) , ''Modular functions of one variable. 1–6'' , ''Lect. notes in math.'' , '''320; 349; 350; 476; 601; 627''' , Springer (1973–1977)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.A. Rankin, "Modular forms and functions" , Cambridge Univ. Press (1977)</TD></TR></table> |
Revision as of 08:01, 6 June 2020
The group $ \Gamma $
of all fractional-linear transformations $ \gamma $
of the form
$$ \tag{1 } z \rightarrow \gamma ( z) = \ \frac{a z + b }{c z + d } ,\ \ a d - b c = 1 , $$
where $ a , b , c , d $ are rational integers. The modular group can be identified with the quotient group $ \mathop{\rm SL} _ {2} ( \mathbf Z ) / \{ \pm E \} $, where
$$ E = \left ( and is a [[Discrete subgroup|discrete subgroup]] in the [[Lie group|Lie group]] $ \mathop{\rm PSL} _ {2} ( \mathbf R ) = \mathop{\rm SL} _ {2} ( \mathbf R ) / \{ \pm E \} $. Here $ \mathop{\rm SL} _ {2} ( \mathbf R ) $( respectively, $ \mathop{\rm SL} _ {2} ( \mathbf Z ) $) is the group of matrices $$ \left (
with $ a , b , c , d $ real numbers (respectively, integers) and $ ad - bc = 1 $. The modular group is a discrete group of transformations of the complex upper half-plane $ H = \{ {z = x + iy } : {y > 0 } \} $( sometimes called the Lobachevskii plane or Poincaré upper half-plane) and has a presentation with generators $ T : z \rightarrow z + 1 $ and $ S : z \rightarrow - 1 / z $, and relations $ S ^ {2} = ( ST) ^ {3} = 1 $, that is, it is the free product of the cyclic group of order 2 generated by $ S $ and the cyclic group of order 3 generated by $ ST $( see [2]).
Interest in the modular group is related to the study of modular functions (cf. Modular function) whose Riemann surfaces (cf. Riemann surface) are quotient spaces of $ H / \Gamma $, identified with a fundamental domain $ G $ of the modular group. The compactification $ X _ \Gamma = ( H / \Gamma ) \cup \infty $ is analytically isomorphic to the complex projective line, where the isomorphism is given by the fundamental modular function $ J ( z) $. The fundamental domain $ G $ has finite Lobachevskii area:
$$ \int\limits _ { G } y ^ {-} 2 d x d y = \frac \pi {3} , $$
that is, the modular group is a Fuchsian group of the first kind (see [3]). For the lattice $ L = \mathbf Z + \mathbf Z z $, $ z \in H $, the lattice $ L _ {1} = \mathbf Z + \mathbf Z \gamma ( z) $,
$$ \gamma = \ \left (
is equivalent to $ L $, that is, can be obtained from $ L $ by multiplying the elements of the latter by a non-zero complex number $ \lambda $, $ \lambda = ( c z + d ) ^ {-} 1 $.
Corresponding to each lattice there is a complex torus $ \mathbf C / L $ that is analytically equivalent to a non-singular cubic curve (an elliptic curve). This gives a one-to-one correspondence between the points of the quotient space $ H / \Gamma $, classes of equivalent lattices and the classes of (analytically) equivalent elliptic curves (see [3]).
The investigation of the subgroups of the modular group is of interest in the theory of modular forms and algebraic curves (cf. Algebraic curve; Modular form). The principal congruence subgroup $ \Gamma ( N) $ of level $ N \geq 1 $( $ N $ an integer) is the group of transformations $ \gamma ( z) $ of the form (1) for which $ a \equiv d \equiv 1 $( $ \mathop{\rm mod} N $), $ c \equiv b \equiv 0 $( $ \mathop{\rm mod} N $). A subgroup $ \widetilde \Gamma \subset \Gamma $ is called a congruence subgroup if $ \widetilde \Gamma \supset \Gamma ( N) $ for some $ N $; the least such $ N $ is called the level of $ \widetilde \Gamma $. Examples of congruence subgroups of level $ N $ are: the group $ \Gamma _ {0} ( N) $ of transformations (1) with $ c $ divisible by $ N $, and the group $ \Gamma _ {1} ( N) $ of transformations (1) with $ a \equiv d \equiv 1 $( $ \mathop{\rm mod} N $) and $ c \equiv 0 $( $ \mathop{\rm mod} N $). The index of $ \Gamma ( N) $ in the modular group is $ ( N ^ {3} / 2 ) \prod _ {p \mid N } ( 1 - p ^ {-} 2 ) $ if $ N > 2 $, $ p $ is a prime number, and 6 if $ N = 2 $; thus, each congruence subgroup has finite index in the modular group.
Corresponding to each subgroup $ \widetilde \Gamma $ of finite index in the modular group there is a complete algebraic curve $ X _ {\widetilde \Gamma } $( a modular curve), obtained from the quotient space $ H / \widetilde \Gamma $ and the covering $ X _ {\widetilde \Gamma } \rightarrow X _ \Gamma $. The study of the branches of this covering allows one to find generators and relations for the congruence subgroup $ \widetilde \Gamma $, the genus of $ X _ {\widetilde \Gamma } $ and to prove that there are subgroups of finite index in the modular group which are not congruence subgroups (see [3], [8], [7], Vol. 2). The study of presentations of the modular group was initiated in work (see [4], [6]) connected with the theory of modular forms. Such presentations were intensively studied within the theory of automorphic forms (see [7] and Automorphic form). Many results related to the modular group have been transferred to the case of arithmetic subgroups of algebraic Lie groups (cf. Arithmetic group; Lie algebra, algebraic).
References
[1] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 1 , Springer (1964) pp. Chapt.8 |
[2] | J.-P. Serre, "A course in arithmetic" , Springer (1973) (Translated from French) |
[3] | G. Shimura, "Introduction to the arithmetic theory of automorphic functions" , Math. Soc. Japan (1971) |
[4] | E. Hecke, "Analytische Arithmetik der positiven quadratischen Formen" , Mathematische Werke , Vandenhoeck & Ruprecht (1959) pp. 789–918 |
[5] | F. Klein, R. Fricke, "Vorlesungen über die Theorie der elliptischen Modulfunktionen" , 1–2 , Teubner (1890–1892) |
[6] | H.D. Kloosterman, "The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups I, II" Ann. of Math. , 47 (1946) pp. 317–375; 376–417 |
[7] | J.-P. Serre (ed.) P. Deligne (ed.) W. Kuyk (ed.) , Modular functions of one variable. 1–6 , Lect. notes in math. , 320; 349; 350; 476; 601; 627 , Springer (1973–1977) |
[8] | R.A. Rankin, "Modular forms and functions" , Cambridge Univ. Press (1977) |
Modular group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modular_group&oldid=16537