Namespaces
Variants
Actions

Difference between revisions of "Homogeneous operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476801.png" /> of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476802.png" /> into a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476803.png" /> such that there exists a symmetric [[Multilinear mapping|multilinear mapping]]
+
<!--
 +
h0476801.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/H047/H.0407680 Homogeneous operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476804.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476805.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476806.png" /> of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476807.png" /> is called the degree of the homogeneous operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476808.png" />. A linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h0476809.png" /> is a homogeneous operator of degree 1 (usually just called homogeneous). One writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768010.png" /> instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768011.png" /> for short, meaning by this the element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768012.png" /> with all coordinates equal, but not a power of an element — a concept that is not defined in an arbitrary vector space. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768013.png" /> is a homogeneous operator of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768014.png" />, then
+
A mapping  $  A $
 +
of a vector space  $  X $
 +
into a vector space $  Y $
 +
such that there exists a symmetric [[Multilinear mapping|multilinear mapping]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768015.png" /></td> </tr></table>
+
$$
 +
B : X \times \dots \times X  \rightarrow  Y
 +
$$
 +
 
 +
with  $  B ( x \dots x ) = A ( x) $.
 +
The number  $  n $
 +
of variables  $  x $
 +
is called the degree of the homogeneous operator  $  A $.
 +
A linear operator  $  L : X \rightarrow Y $
 +
is a homogeneous operator of degree 1 (usually just called homogeneous). One writes  $  x  ^ {n} $
 +
instead of  $  ( x \dots x ) $
 +
for short, meaning by this the element of  $  X \times \dots \times X $
 +
with all coordinates equal, but not a power of an element — a concept that is not defined in an arbitrary vector space. If  $  A $
 +
is a homogeneous operator of degree  $  n $,
 +
then
 +
 
 +
$$
 +
A ( tx )  =  t  ^ {n} A ( x) .
 +
$$
  
 
More generally:
 
More generally:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768016.png" /></td> </tr></table>
+
$$
 +
A ( t _ {1} x _ {1} + \dots + t _ {k} x _ {k} ) =
 +
$$
 +
 
 +
$$
 +
= \
 +
\sum _ {\begin{array}{c}
 +
n _ {1} + \dots + n _ {k} = n \\
 +
n _ {i} \geq  0  
 +
\end{array}
 +
}
 +
\frac{n ! }{n _ {1} ! \dots n _ {k} ! }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768017.png" /></td> </tr></table>
+
t _ {1} ^ {n _ {1} } \dots t _ {k} ^ {n _ {k} } B (
 +
x _ {1} ^ {n _ {1} } \dots x _ {k} ^ {n _ {k} } ) .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768019.png" /> are normed vector spaces, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768020.png" /> is continuous if and only if it is bounded, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768021.png" /> is continuous at zero it is continuous on the whole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047680/h04768022.png" />.
+
If $  X $
 +
and $  Y $
 +
are normed vector spaces, then $  A $
 +
is continuous if and only if it is bounded, and if $  A $
 +
is continuous at zero it is continuous on the whole of $  X $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elements of functional analysis" , Hindushtan Publ. Comp.  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  H. Cartan,  "Calcul différentiel" , Hermann  (1967)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  H. Cartan,  "Differential forms" , Kershaw  (1983)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elements of functional analysis" , Hindushtan Publ. Comp.  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  H. Cartan,  "Calcul différentiel" , Hermann  (1967)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  H. Cartan,  "Differential forms" , Kershaw  (1983)  (Translated from French)</TD></TR></table>

Latest revision as of 22:10, 5 June 2020


A mapping $ A $ of a vector space $ X $ into a vector space $ Y $ such that there exists a symmetric multilinear mapping

$$ B : X \times \dots \times X \rightarrow Y $$

with $ B ( x \dots x ) = A ( x) $. The number $ n $ of variables $ x $ is called the degree of the homogeneous operator $ A $. A linear operator $ L : X \rightarrow Y $ is a homogeneous operator of degree 1 (usually just called homogeneous). One writes $ x ^ {n} $ instead of $ ( x \dots x ) $ for short, meaning by this the element of $ X \times \dots \times X $ with all coordinates equal, but not a power of an element — a concept that is not defined in an arbitrary vector space. If $ A $ is a homogeneous operator of degree $ n $, then

$$ A ( tx ) = t ^ {n} A ( x) . $$

More generally:

$$ A ( t _ {1} x _ {1} + \dots + t _ {k} x _ {k} ) = $$

$$ = \ \sum _ {\begin{array}{c} n _ {1} + \dots + n _ {k} = n \\ n _ {i} \geq 0 \end{array} } \frac{n ! }{n _ {1} ! \dots n _ {k} ! } t _ {1} ^ {n _ {1} } \dots t _ {k} ^ {n _ {k} } B ( x _ {1} ^ {n _ {1} } \dots x _ {k} ^ {n _ {k} } ) . $$

If $ X $ and $ Y $ are normed vector spaces, then $ A $ is continuous if and only if it is bounded, and if $ A $ is continuous at zero it is continuous on the whole of $ X $.

References

[1] L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)
[2a] H. Cartan, "Calcul différentiel" , Hermann (1967)
[2b] H. Cartan, "Differential forms" , Kershaw (1983) (Translated from French)
How to Cite This Entry:
Homogeneous operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homogeneous_operator&oldid=15866
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article