Namespaces
Variants
Actions

Difference between revisions of "Larmor radius"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The radius of the circle along which an electrically charged particle moves in a plane perpendicular to a magnetic field with magnetic induction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575901.png" />. The motion of the charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575902.png" /> in a uniform magnetic field takes place under the action of the Lorentz force and is described by the equation
+
<!--
 +
l0575901.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/L057/L.0507590 Larmor radius
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575904.png" /> is the momentum of the charged particle and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575905.png" /> is the velocity of the charge in the laboratory reference frame. The solution of (1) in a Cartesian coordinate system with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575906.png" />-axis directed along the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575907.png" /> has the form
+
The radius of the circle along which an electrically charged particle moves in a plane perpendicular to a magnetic field with magnetic induction  $  \mathbf B $.  
 +
The motion of the charge $  e $
 +
in a uniform magnetic field takes place under the action of the Lorentz force and is described by the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575908.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{1 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l0575909.png" /></td> </tr></table>
+
\frac{\partial  \mathbf p }{\partial  t }
 +
  = \
 +
e [ \mathbf v , \mathbf B ] ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759010.png" /></td> </tr></table>
+
where  $  \mathbf p $
 +
is the momentum of the charged particle and  $  \mathbf v $
 +
is the velocity of the charge in the laboratory reference frame. The solution of (1) in a Cartesian coordinate system with the  $  z $-
 +
axis directed along the field  $  \mathbf B $
 +
has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759011.png" /></td> </tr></table>
+
$$ \tag{2 }
 +
v _ {x}  = v _ {0t}  \cos ( \omega _ {L} t + \alpha ) ,\ \
 +
v _ {y}  = - v _ {0t}  \sin ( \omega _ {L} t + \alpha ) ,\ \
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759012.png" /> is the so-called Larmor frequency, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759013.png" /> is the energy of the charged particle, which does not change under motion in a uniform magnetic field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759019.png" /> are constants determined from the initial conditions, and
+
$$
 +
v _ {z}  = v _ {0z} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759020.png" /></td> </tr></table>
+
$$
 +
= x _ {0} + r  \sin ( \omega _ {L} t + \alpha ) ,\  y
 +
= y _ {0} + r  \cos ( \omega _ {L} t + \alpha ) ,
 +
$$
  
is the Larmor radius. In a uniform magnetic field the charge moves along a helix with axis along the magnetic field and Larmor radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759021.png" />. The velocity of the particle is constant.
+
$$
 +
= z _ {0} + v _ {0z} t ,
 +
$$
  
If the velocity of the particle is small compared with the velocity of light, one can put approximately <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759022.png" /> and the expression for the Larmor radius takes the form
+
where  $  \omega _ {L} = e c  ^ {2} \mathbf B / \epsilon $
 +
is the so-called Larmor frequency,  $  \epsilon $
 +
is the energy of the charged particle, which does not change under motion in a uniform magnetic field,  $  v _ {0t} $,
 +
$  v _ {0z} $,
 +
$  \alpha $,
 +
$  x _ {0} $,
 +
$  y _ {0} $,
 +
$  z _ {0} $
 +
are constants determined from the initial conditions, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759023.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{v _ {0t} }{\omega _ {L} }
 +
  = \
 +
 
 +
\frac{v _ {0t} \epsilon }{e c  ^ {2} | \mathbf B | }
 +
 
 +
$$
 +
 
 +
is the Larmor radius. In a uniform magnetic field the charge moves along a helix with axis along the magnetic field and Larmor radius  $  r $.
 +
The velocity of the particle is constant.
 +
 
 +
If the velocity of the particle is small compared with the velocity of light, one can put approximately  $  \epsilon = mc  ^ {2} $
 +
and the expression for the Larmor radius takes the form
 +
 
 +
$$
 +
=
 +
\frac{v _ {0t} }{\omega _ {0} }
 +
  = \
 +
 
 +
\frac{v _ {0t} mc  ^ {2} }{e | \mathbf B | }
 +
.
 +
$$
  
 
The magnetic moment of the system manifests itself as a result of the rotation of the charged particles in the magnetic field.
 
The magnetic moment of the system manifests itself as a result of the rotation of the charged particles in the magnetic field.
Line 27: Line 84:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.E. Tamm,  "Fundamentals of the theory of electricity" , MIR  (1979)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "The classical theory of fields" , Addison-Wesley  (1951)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.E. Tamm,  "Fundamentals of the theory of electricity" , MIR  (1979)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "The classical theory of fields" , Addison-Wesley  (1951)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.C. Clemmow,  J.P. Dougherty,  "Electrodynamics of particles and plasmas" , Addison-Wesley  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.C. Clemmow,  J.P. Dougherty,  "Electrodynamics of particles and plasmas" , Addison-Wesley  (1969)</TD></TR></table>

Revision as of 22:15, 5 June 2020


The radius of the circle along which an electrically charged particle moves in a plane perpendicular to a magnetic field with magnetic induction $ \mathbf B $. The motion of the charge $ e $ in a uniform magnetic field takes place under the action of the Lorentz force and is described by the equation

$$ \tag{1 } \frac{\partial \mathbf p }{\partial t } = \ e [ \mathbf v , \mathbf B ] , $$

where $ \mathbf p $ is the momentum of the charged particle and $ \mathbf v $ is the velocity of the charge in the laboratory reference frame. The solution of (1) in a Cartesian coordinate system with the $ z $- axis directed along the field $ \mathbf B $ has the form

$$ \tag{2 } v _ {x} = v _ {0t} \cos ( \omega _ {L} t + \alpha ) ,\ \ v _ {y} = - v _ {0t} \sin ( \omega _ {L} t + \alpha ) ,\ \ $$

$$ v _ {z} = v _ {0z} , $$

$$ x = x _ {0} + r \sin ( \omega _ {L} t + \alpha ) ,\ y = y _ {0} + r \cos ( \omega _ {L} t + \alpha ) , $$

$$ z = z _ {0} + v _ {0z} t , $$

where $ \omega _ {L} = e c ^ {2} \mathbf B / \epsilon $ is the so-called Larmor frequency, $ \epsilon $ is the energy of the charged particle, which does not change under motion in a uniform magnetic field, $ v _ {0t} $, $ v _ {0z} $, $ \alpha $, $ x _ {0} $, $ y _ {0} $, $ z _ {0} $ are constants determined from the initial conditions, and

$$ r = \frac{v _ {0t} }{\omega _ {L} } = \ \frac{v _ {0t} \epsilon }{e c ^ {2} | \mathbf B | } $$

is the Larmor radius. In a uniform magnetic field the charge moves along a helix with axis along the magnetic field and Larmor radius $ r $. The velocity of the particle is constant.

If the velocity of the particle is small compared with the velocity of light, one can put approximately $ \epsilon = mc ^ {2} $ and the expression for the Larmor radius takes the form

$$ r = \frac{v _ {0t} }{\omega _ {0} } = \ \frac{v _ {0t} mc ^ {2} }{e | \mathbf B | } . $$

The magnetic moment of the system manifests itself as a result of the rotation of the charged particles in the magnetic field.

References

[1] I.E. Tamm, "Fundamentals of the theory of electricity" , MIR (1979) (Translated from Russian)
[2] L.D. Landau, E.M. Lifshitz, "The classical theory of fields" , Addison-Wesley (1951) (Translated from Russian)

Comments

References

[a1] P.C. Clemmow, J.P. Dougherty, "Electrodynamics of particles and plasmas" , Addison-Wesley (1969)
How to Cite This Entry:
Larmor radius. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Larmor_radius&oldid=15742
This article was adapted from an original article by V.V. Parail (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article