Namespaces
Variants
Actions

Difference between revisions of "Transversal mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
t0939801.png
 +
$#A+1 = 49 n = 0
 +
$#C+1 = 49 : ~/encyclopedia/old_files/data/T093/T.0903980 Transversal mapping,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''transversally-regular mapping''
 
''transversally-regular mapping''
  
 
A mapping with certain properties of [[General position|general position]].
 
A mapping with certain properties of [[General position|general position]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939801.png" /> be a [[Vector bundle|vector bundle]] over a finite [[Cellular space|cellular space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939802.png" />, and let the total space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939803.png" /> be imbedded as an open subset in some topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939804.png" />. Then a continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939805.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939806.png" /> is a smooth manifold, is called a transversal mapping to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939807.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939808.png" /> is a smooth submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939809.png" /> with [[Normal bundle|normal bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398010.png" /> and if the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398011.png" /> to a [[Tubular neighbourhood|tubular neighbourhood]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398013.png" /> defines a morphism of bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398014.png" />.
+
Let $  \xi $
 +
be a [[Vector bundle|vector bundle]] over a finite [[Cellular space|cellular space]] $  X $,  
 +
and let the total space of $  \xi $
 +
be imbedded as an open subset in some topological space $  Z $.  
 +
Then a continuous mapping $  f: M \rightarrow Z $,  
 +
where $  M $
 +
is a smooth manifold, is called a transversal mapping to $  X $
 +
if $  V = f ^ { - 1 } ( X) $
 +
is a smooth submanifold of $  M $
 +
with [[Normal bundle|normal bundle]] $  \nu $
 +
and if the restriction of $  f $
 +
to a [[Tubular neighbourhood|tubular neighbourhood]] of $  V $
 +
in $  M $
 +
defines a morphism of bundles $  \nu \rightarrow \xi $.
  
For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398015.png" /> be a smooth mapping of smooth manifolds, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398016.png" /> be a smooth submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398017.png" />. If the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398018.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398019.png" /> is the tangent bundle) contains in its image all vectors normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398021.png" /> of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398022.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398023.png" /> is a transversal mapping (cf. also [[Transversality|Transversality]]).
+
For example, let $  f: M \rightarrow N $
 +
be a smooth mapping of smooth manifolds, and let $  X $
 +
be a smooth submanifold of $  N $.  
 +
If the differential $  df: \tau _ {M} \rightarrow \tau _ {N} $(
 +
where $  \tau $
 +
is the tangent bundle) contains in its image all vectors normal to $  X $
 +
in $  N $
 +
of the bundle $  \xi $,  
 +
then $  f $
 +
is a transversal mapping (cf. also [[Transversality|Transversality]]).
  
The approximation theorem [[#References|[1]]]: The transversal mappings form a set of the second category in the set of all continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398024.png" />. Moreover, any continuous mapping is homotopic to a transversal mapping. This theorem enables one to associate with algebraic invariants (homotopy classes of mappings) descriptive geometric forms (certain equivalence classes of manifolds that are pre-images under transversal mappings). This association also goes in the other direction, namely from geometry to algebra. Along these lines, various [[Bordism|bordism]] groups, for example, have been calculated, smooth manifolds of given homotopy type have been classified, etc.
+
The approximation theorem [[#References|[1]]]: The transversal mappings form a set of the second category in the set of all continuous mappings $  M \rightarrow Z $.  
 +
Moreover, any continuous mapping is homotopic to a transversal mapping. This theorem enables one to associate with algebraic invariants (homotopy classes of mappings) descriptive geometric forms (certain equivalence classes of manifolds that are pre-images under transversal mappings). This association also goes in the other direction, namely from geometry to algebra. Along these lines, various [[Bordism|bordism]] groups, for example, have been calculated, smooth manifolds of given homotopy type have been classified, etc.
  
The notion of a transversal mapping can be carried over to the categories of piecewise-linear and topological manifolds and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398025.png" />-bundles. Furthermore, in the piecewise-linear category the approximation theorem holds; see [[#References|[3]]]. Also, in the topological category every continuous mapping is homotopic to a transversal one; this was proved for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398026.png" /> in [[#References|[4]]] and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398027.png" /> in [[#References|[5]]], based on a subsequently proved, difficult result of [[#References|[6]]]. The notion of a transversal mapping can also be formulated for infinite-dimensional manifolds.
+
The notion of a transversal mapping can be carried over to the categories of piecewise-linear and topological manifolds and $  \mathbf R  ^ {n} $-
 +
bundles. Furthermore, in the piecewise-linear category the approximation theorem holds; see [[#References|[3]]]. Also, in the topological category every continuous mapping is homotopic to a transversal one; this was proved for $  \mathop{\rm dim}  M \neq 4 \neq  \mathop{\rm dim}  M -  \mathop{\rm dim}  \xi $
 +
in [[#References|[4]]] and for $  \mathop{\rm dim}  M = 4 $
 +
in [[#References|[5]]], based on a subsequently proved, difficult result of [[#References|[6]]]. The notion of a transversal mapping can also be formulated for infinite-dimensional manifolds.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Thom,  "Un lemma sur les applications différentiables"  ''Bol. Soc. Mat. Mex.'' , '''1'''  (1956)  pp. 59–71</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.B. Browder,  "Surgery on simply connected manifolds" , Springer  (1972)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Williamson,  "Cobordism of combinatorial manifolds"  ''Ann. of Math.'' , '''83'''  (1966)  pp. 1–33</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.C. Kirby,  L.C. Siebenmann,  "Foundational essays on topological manifolds, smoothing, and triangulations" , Princeton Univ. Press  (1977)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M. Sharlemann,  "Transversality theories at dimension 4"  ''Invent. Math.'' , '''33'''  (1976)  pp. 1–14</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Freedman,  "The topology of four-dimensional manifolds"  ''J. Diff. Geom.'' , '''17'''  (1982)  pp. 357–453</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Thom,  "Un lemma sur les applications différentiables"  ''Bol. Soc. Mat. Mex.'' , '''1'''  (1956)  pp. 59–71</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.B. Browder,  "Surgery on simply connected manifolds" , Springer  (1972)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Williamson,  "Cobordism of combinatorial manifolds"  ''Ann. of Math.'' , '''83'''  (1966)  pp. 1–33</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.C. Kirby,  L.C. Siebenmann,  "Foundational essays on topological manifolds, smoothing, and triangulations" , Princeton Univ. Press  (1977)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M. Sharlemann,  "Transversality theories at dimension 4"  ''Invent. Math.'' , '''33'''  (1976)  pp. 1–14</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Freedman,  "The topology of four-dimensional manifolds"  ''J. Diff. Geom.'' , '''17'''  (1982)  pp. 357–453</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The notion of [[Transversality|transversality]] is defined for arbitrary smooth mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398028.png" /> between smooth manifolds. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398029.png" /> is a smooth submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398030.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398031.png" /> is transverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398032.png" /> if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398033.png" /> in the pre-image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398035.png" />, the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398036.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398037.png" /> is spanned by the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398038.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398039.png" /> and the image, under the differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398040.png" />, of the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398041.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398042.png" />. When this holds, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398043.png" /> is a smooth submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398044.png" />, and the normal bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398045.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398046.png" /> is the pull-back under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398047.png" /> of the normal bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398048.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t09398049.png" />. The approximation theorem is valid for such mappings. For the use of transversality in topology see [[#References|[a1]]]–[[#References|[a3]]].
+
The notion of [[Transversality|transversality]] is defined for arbitrary smooth mappings $  f : M \rightarrow N $
 +
between smooth manifolds. If $  A $
 +
is a smooth submanifold of $  N $,  
 +
then $  f $
 +
is transverse to $  A $
 +
if for every $  x $
 +
in the pre-image $  V $
 +
of $  A $,  
 +
the tangent space to $  N $
 +
at $  f ( x) $
 +
is spanned by the tangent space to $  A $
 +
at $  f ( x) $
 +
and the image, under the differential of $  f $,  
 +
of the tangent space to $  M $
 +
at $  x $.  
 +
When this holds, then $  V $
 +
is a smooth submanifold of $  M $,  
 +
and the normal bundle to $  V $
 +
in $  M $
 +
is the pull-back under $  f $
 +
of the normal bundle to $  A $
 +
in $  N $.  
 +
The approximation theorem is valid for such mappings. For the use of transversality in topology see [[#References|[a1]]]–[[#References|[a3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.S. Pontryagin,  "Smooth manifolds and their applications in homotopy theory" , Amer. Math. Soc.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Thom,  "Quelques propriétés globales des variétés différentiables"  ''Comment. Math. Helvetica'' , '''28'''  (1954)  pp. 17–86</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.W. Hirsch,  "Differential topology" , Springer  (1976)  pp. 4, 78</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.S. Pontryagin,  "Smooth manifolds and their applications in homotopy theory" , Amer. Math. Soc.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Thom,  "Quelques propriétés globales des variétés différentiables"  ''Comment. Math. Helvetica'' , '''28'''  (1954)  pp. 17–86</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.W. Hirsch,  "Differential topology" , Springer  (1976)  pp. 4, 78</TD></TR></table>

Revision as of 08:26, 6 June 2020


transversally-regular mapping

A mapping with certain properties of general position.

Let $ \xi $ be a vector bundle over a finite cellular space $ X $, and let the total space of $ \xi $ be imbedded as an open subset in some topological space $ Z $. Then a continuous mapping $ f: M \rightarrow Z $, where $ M $ is a smooth manifold, is called a transversal mapping to $ X $ if $ V = f ^ { - 1 } ( X) $ is a smooth submanifold of $ M $ with normal bundle $ \nu $ and if the restriction of $ f $ to a tubular neighbourhood of $ V $ in $ M $ defines a morphism of bundles $ \nu \rightarrow \xi $.

For example, let $ f: M \rightarrow N $ be a smooth mapping of smooth manifolds, and let $ X $ be a smooth submanifold of $ N $. If the differential $ df: \tau _ {M} \rightarrow \tau _ {N} $( where $ \tau $ is the tangent bundle) contains in its image all vectors normal to $ X $ in $ N $ of the bundle $ \xi $, then $ f $ is a transversal mapping (cf. also Transversality).

The approximation theorem [1]: The transversal mappings form a set of the second category in the set of all continuous mappings $ M \rightarrow Z $. Moreover, any continuous mapping is homotopic to a transversal mapping. This theorem enables one to associate with algebraic invariants (homotopy classes of mappings) descriptive geometric forms (certain equivalence classes of manifolds that are pre-images under transversal mappings). This association also goes in the other direction, namely from geometry to algebra. Along these lines, various bordism groups, for example, have been calculated, smooth manifolds of given homotopy type have been classified, etc.

The notion of a transversal mapping can be carried over to the categories of piecewise-linear and topological manifolds and $ \mathbf R ^ {n} $- bundles. Furthermore, in the piecewise-linear category the approximation theorem holds; see [3]. Also, in the topological category every continuous mapping is homotopic to a transversal one; this was proved for $ \mathop{\rm dim} M \neq 4 \neq \mathop{\rm dim} M - \mathop{\rm dim} \xi $ in [4] and for $ \mathop{\rm dim} M = 4 $ in [5], based on a subsequently proved, difficult result of [6]. The notion of a transversal mapping can also be formulated for infinite-dimensional manifolds.

References

[1] R. Thom, "Un lemma sur les applications différentiables" Bol. Soc. Mat. Mex. , 1 (1956) pp. 59–71
[2] W.B. Browder, "Surgery on simply connected manifolds" , Springer (1972)
[3] R. Williamson, "Cobordism of combinatorial manifolds" Ann. of Math. , 83 (1966) pp. 1–33
[4] R.C. Kirby, L.C. Siebenmann, "Foundational essays on topological manifolds, smoothing, and triangulations" , Princeton Univ. Press (1977)
[5] M. Sharlemann, "Transversality theories at dimension 4" Invent. Math. , 33 (1976) pp. 1–14
[6] M. Freedman, "The topology of four-dimensional manifolds" J. Diff. Geom. , 17 (1982) pp. 357–453

Comments

The notion of transversality is defined for arbitrary smooth mappings $ f : M \rightarrow N $ between smooth manifolds. If $ A $ is a smooth submanifold of $ N $, then $ f $ is transverse to $ A $ if for every $ x $ in the pre-image $ V $ of $ A $, the tangent space to $ N $ at $ f ( x) $ is spanned by the tangent space to $ A $ at $ f ( x) $ and the image, under the differential of $ f $, of the tangent space to $ M $ at $ x $. When this holds, then $ V $ is a smooth submanifold of $ M $, and the normal bundle to $ V $ in $ M $ is the pull-back under $ f $ of the normal bundle to $ A $ in $ N $. The approximation theorem is valid for such mappings. For the use of transversality in topology see [a1][a3].

References

[a1] L.S. Pontryagin, "Smooth manifolds and their applications in homotopy theory" , Amer. Math. Soc. (1959) (Translated from Russian)
[a2] R. Thom, "Quelques propriétés globales des variétés différentiables" Comment. Math. Helvetica , 28 (1954) pp. 17–86
[a3] M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78
How to Cite This Entry:
Transversal mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transversal_mapping&oldid=15729
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article