Namespaces
Variants
Actions

Difference between revisions of "Dedekind-theorem(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 19 formulas out of 19 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 19 formulas, 19 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''on linear independence of field homomorphisms, Dedekind lemma''
 
''on linear independence of field homomorphisms, Dedekind lemma''
  
Any set of field homomorphisms of a [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200701.png" /> into another field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200702.png" /> is linearly independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200703.png" /> (see also [[Homomorphism|Homomorphism]]; [[Linear independence|Linear independence]]). I.e., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200704.png" /> are distinct homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200705.png" />, then for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200706.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200707.png" />, not all zero, there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200708.png" /> such that
+
Any set of field homomorphisms of a [[Field|field]] $E$ into another field $F$ is linearly independent over $F$ (see also [[Homomorphism|Homomorphism]]; [[Linear independence|Linear independence]]). I.e., if $\sigma _ { 1 } , \ldots , \sigma _ { t }$ are distinct homomorphisms $E \rightarrow F$, then for all $a _ { 1 } , \dots , a _ { t }$ in $F$, not all zero, there is an $u \in E$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200709.png" /></td> </tr></table>
+
\begin{equation*} a _ { 1 } \sigma _ { 1 } ( u ) + \ldots + a _ { t } \sigma _ { t } ( u ) \neq 0. \end{equation*}
  
An immediate consequence is a basic estimate in [[Galois theory|Galois theory]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007011.png" /> are field extensions of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007012.png" /> and the degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007014.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007015.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007016.png" /> (cf. [[Extension of a field|Extension of a field]]), than there are at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007017.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007018.png" />-homomorphisms of fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007019.png" />.
+
An immediate consequence is a basic estimate in [[Galois theory|Galois theory]]: If $E$, $F$ are field extensions of a field $K$ and the degree $[ E : K ]$ of $E$ over $K$ is $n$ (cf. [[Extension of a field|Extension of a field]]), than there are at most $n$ $K$-homomorphisms of fields $E \rightarrow F$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Algebra" , '''2''' , Wiley  (1989)  pp. 81  (Edition: Second)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.-H. Sprindler,  "Abstract algebra with applications" , '''2''' , M. Dekker  (1994)  pp. 395</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Jacobson,  "Lectures in abstract algebra: Theory of fields and Galois theory" , '''3''' , v. Nostrand  (1964)  pp. Chap. I, §3</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P.M. Cohn,  "Algebra" , '''2''' , Wiley  (1989)  pp. 81  (Edition: Second)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  K.-H. Sprindler,  "Abstract algebra with applications" , '''2''' , M. Dekker  (1994)  pp. 395</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N. Jacobson,  "Lectures in abstract algebra: Theory of fields and Galois theory" , '''3''' , v. Nostrand  (1964)  pp. Chap. I, §3</td></tr></table>

Latest revision as of 16:55, 1 July 2020

on linear independence of field homomorphisms, Dedekind lemma

Any set of field homomorphisms of a field $E$ into another field $F$ is linearly independent over $F$ (see also Homomorphism; Linear independence). I.e., if $\sigma _ { 1 } , \ldots , \sigma _ { t }$ are distinct homomorphisms $E \rightarrow F$, then for all $a _ { 1 } , \dots , a _ { t }$ in $F$, not all zero, there is an $u \in E$ such that

\begin{equation*} a _ { 1 } \sigma _ { 1 } ( u ) + \ldots + a _ { t } \sigma _ { t } ( u ) \neq 0. \end{equation*}

An immediate consequence is a basic estimate in Galois theory: If $E$, $F$ are field extensions of a field $K$ and the degree $[ E : K ]$ of $E$ over $K$ is $n$ (cf. Extension of a field), than there are at most $n$ $K$-homomorphisms of fields $E \rightarrow F$.

References

[a1] P.M. Cohn, "Algebra" , 2 , Wiley (1989) pp. 81 (Edition: Second)
[a2] K.-H. Sprindler, "Abstract algebra with applications" , 2 , M. Dekker (1994) pp. 395
[a3] N. Jacobson, "Lectures in abstract algebra: Theory of fields and Galois theory" , 3 , v. Nostrand (1964) pp. Chap. I, §3
How to Cite This Entry:
Dedekind-theorem(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dedekind-theorem(2)&oldid=15461
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article