|
|
Line 1: |
Line 1: |
− | ''of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675001.png" />'' | + | ''of a field $K$'' |
| | | |
− | An algebraic field extension (cf. [[Extension of a field|Extension of a field]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675002.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675003.png" /> satisfying one of the following equivalent conditions: | + | An algebraic field extension (cf. [[Extension of a field]]) $L$ of $K$ satisfying one of the following equivalent conditions: |
| | | |
− | 1) any imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675004.png" /> in the [[Algebraic closure|algebraic closure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675005.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675006.png" /> comes from an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675007.png" />; | + | 1) any imbedding of $L$ in the [[algebraic closure]] $\bar K$ of $K$ comes from an automorphism of $L$; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675008.png" /> is the splitting field of some family of polynomials with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n0675009.png" /> (cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]); | + | 2) $L$ is the splitting field of some family of polynomials with coefficients in $K$ (cf. [[Splitting field of a polynomial]]); |
| | | |
− | 3) any polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750010.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750011.png" />, irreducible over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750012.png" /> and having a root in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750013.png" />, splits in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750014.png" /> into linear factors. | + | 3) any polynomial $f(x)$ with coefficients in $K$, irreducible over $K$ and having a root in $L$, splits in $L$ into linear factors. |
| | | |
− | For every algebraic extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750015.png" /> there is a maximal intermediate subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750016.png" /> that is normal over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750017.png" />; this is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750019.png" /> ranges over all imbeddings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750021.png" />. There is also a unique minimal normal extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750022.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750023.png" />. This is the composite of all fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750024.png" />. It is called the normal closure of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750025.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750028.png" /> are normal extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750029.png" />, then so are the intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750030.png" /> and the composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750031.png" />. However, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750033.png" /> are normal extensions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067500/n06750034.png" /> need not be normal. | + | For every [[algebraic extension]] $F/K$ there is a maximal intermediate subfield $L$ that is normal over $K$; this is the field $L = \bigcap_\sigma F^\sigma$, where $\sigma$ ranges over all imbeddings of $F$ in $\bar K$. There is also a unique minimal normal extension of $K$ containing $F$. This is the composite of all fields $F^\sigma$. It is called the ''normal closure'' of the field $F$ relative to $K$. If $L_1$ and $L_2$ are normal extensions of $K$, then so are the intersection $L_1 \cap L_2$ and the composite $L_1 \cdot L_2$. However, when $L/K'$ and $K'/K$ are normal extensions, $L/K$ need not be normal. |
| | | |
− | For fields of characteristic zero every normal extension is a Galois extension. In general, a normal extension is a [[Galois extension|Galois extension]] if and only if it is separable (cf. [[Separable extension|Separable extension]]). | + | For fields of characteristic zero every normal extension is a Galois extension. In general, a normal extension is a [[Galois extension]] if and only if it is a [[separable extension]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Postnikov, "Fundamentals of Galois theory" , Noordhoff (1962) (Translated from Russian)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Postnikov, "Fundamentals of Galois theory" , Noordhoff (1962) (Translated from Russian)</TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
of a field $K$
An algebraic field extension (cf. Extension of a field) $L$ of $K$ satisfying one of the following equivalent conditions:
1) any imbedding of $L$ in the algebraic closure $\bar K$ of $K$ comes from an automorphism of $L$;
2) $L$ is the splitting field of some family of polynomials with coefficients in $K$ (cf. Splitting field of a polynomial);
3) any polynomial $f(x)$ with coefficients in $K$, irreducible over $K$ and having a root in $L$, splits in $L$ into linear factors.
For every algebraic extension $F/K$ there is a maximal intermediate subfield $L$ that is normal over $K$; this is the field $L = \bigcap_\sigma F^\sigma$, where $\sigma$ ranges over all imbeddings of $F$ in $\bar K$. There is also a unique minimal normal extension of $K$ containing $F$. This is the composite of all fields $F^\sigma$. It is called the normal closure of the field $F$ relative to $K$. If $L_1$ and $L_2$ are normal extensions of $K$, then so are the intersection $L_1 \cap L_2$ and the composite $L_1 \cdot L_2$. However, when $L/K'$ and $K'/K$ are normal extensions, $L/K$ need not be normal.
For fields of characteristic zero every normal extension is a Galois extension. In general, a normal extension is a Galois extension if and only if it is a separable extension.
References
[1] | B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German) |
[2] | S. Lang, "Algebra" , Addison-Wesley (1984) |
[3] | M.M. Postnikov, "Fundamentals of Galois theory" , Noordhoff (1962) (Translated from Russian) |