Namespaces
Variants
Actions

Difference between revisions of "Porosity point"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738301.png" /> in a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738302.png" />''
+
<!--
 +
p0738301.png
 +
$#A+1 = 45 n = 6
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/P073/P.0703830 Porosity point
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738303.png" /> for which there exists a sequence of open balls <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738304.png" /> with radii <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738305.png" /> and common centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738306.png" />, such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738307.png" /> there is an open ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738308.png" /> with radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p0738309.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383010.png" /> is positive and independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383011.png" /> (but, generally speaking, depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383013.png" />). A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383014.png" /> is called porous if any point in it is a porosity point of it. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383015.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383017.png" />-porous if it can be represented as a finite or countable union of porous sets (see [[#References|[1]]]). A porosity point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383018.png" /> is a porosity point of its closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383019.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383020.png" />, a porosity point of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383021.png" /> is not a Lebesgue density point either of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383022.png" /> or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383023.png" />. Any porous or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383024.png" />-porous set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383025.png" /> is of the first Baire category (cf. [[Baire classes|Baire classes]]) and of Lebesgue measure zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383026.png" />. The converse of this statement, generally speaking, does not hold: There even exist nowhere-dense perfect sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383027.png" /> of measure zero that are not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383028.png" />-porous (see [[#References|[2]]]).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Sometimes, in the case of an infinite-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383029.png" />, porous and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383030.png" />-porous sets take the role of sets of measure zero. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383032.png" /> is an increasing continuous function with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383033.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383034.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383036.png" />-porous point of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383037.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383038.png" />, using the same notations (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383039.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383040.png" />). The concepts of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383042.png" />-porous and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383045.png" />-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383046.png" />-porous sets are defined accordingly. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383048.png" />), a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383049.png" />-porous set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png" /> may be a set of positive Lebesgue measure.
+
''of a set  $  E $
 +
in a metric space  $  X $''
 +
 
 +
A point  $  x _ {0} \in X $
 +
for which there exists a sequence of open balls  $  B _ {k} $
 +
with radii  $  r _ {k} \rightarrow 0 $
 +
and common centre at the point  $  x _ {0} $,
 +
such that for any  $  k = 1 , 2 \dots $
 +
there is an open ball  $  G _ {k} \subset  B _ {k} \setminus  E $
 +
with radius  $  \rho _ {k} \geq  C r _ {k} $,
 +
where  $  C $
 +
is positive and independent of  $  k $(
 +
but, generally speaking, depends on  $  x _ {0} $
 +
and  $  E $).
 +
A set  $  E $
 +
is called porous if any point in it is a porosity point of it. A set  $  E $
 +
is called  $  \sigma $-
 +
porous if it can be represented as a finite or countable union of porous sets (see [[#References|[1]]]). A porosity point of  $  E $
 +
is a porosity point of its closure  $  \overline{E}\; $.
 +
If  $  X = \mathbf R  ^ {n} $,
 +
a porosity point of a set  $  E \subset  X $
 +
is not a Lebesgue density point either of  $  E $
 +
or of  $  \overline{E}\; $.
 +
Any porous or  $  \sigma $-
 +
porous set  $  E \subset  \mathbf R  ^ {n} $
 +
is of the first Baire category (cf. [[Baire classes|Baire classes]]) and of Lebesgue measure zero in  $  \mathbf R  ^ {n} $.
 +
The converse of this statement, generally speaking, does not hold: There even exist nowhere-dense perfect sets  $  E \subset  \mathbf R  ^ {1} $
 +
of measure zero that are not  $  \sigma $-
 +
porous (see [[#References|[2]]]).
 +
 
 +
Sometimes, in the case of an infinite-dimensional space $  X $,  
 +
porous and $  \sigma $-
 +
porous sets take the role of sets of measure zero. If $  X = \mathbf R  ^ {n} $
 +
and  $  h: [ 0, \infty ) \rightarrow \mathbf R $
 +
is an increasing continuous function with $  h( 0) = 0 $,  
 +
then $  x _ {0} \in X $
 +
is called an $  h $-
 +
porous point of a set $  E \subset  X $
 +
if $  h ( \rho _ {k} ) \geq  Cr _ {k} $,  
 +
using the same notations ( $  C $
 +
is independent of $  k $).  
 +
The concepts of $  h $-
 +
porous and $  \sigma $-
 +
$  h $-
 +
porous sets are defined accordingly. In the case $  h( t)/t \rightarrow \infty $(
 +
$  t \rightarrow 0 $),  
 +
a $  h $-
 +
porous set $  E \subset  X = \mathbf R  ^ {n} $
 +
may be a set of positive Lebesgue measure.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.P. Dolzhenko,  "Boundary properties of arbitrary functions"  ''Math. USSR Izv.'' , '''1''' :  1  (1967)  pp. 1–12  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''31''' :  1  (1967)  pp. 3–14</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Zajiček,  "Sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383051.png" />-porosity and sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383052.png" />-porosity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383053.png" />"  ''Casopis. Pešt. Mat.'' , '''101'''  (1976)  pp. 350–359</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Foran,  P.D. Humke,  "Some set-theoretic properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383054.png" />-porous sets"  ''Real Anal. Exch.'' , '''6''' :  1  (1980/81)  pp. 114–119</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J. Tkadlec,  "Constructions of some non-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383055.png" />-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383056.png" />-porous sets on the real line"  ''Real Anal. Exch.'' , '''9''' :  2  (1983/84)  pp. 473–482</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S.J. Agronsky,  A.M. Bruckner,  "Local compactness and porosity in metric spaces"  ''Real Anal. Exch.'' , '''11''' :  2  (1985/86)  pp. 365–379</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  Yu.A. Shevchenko,  "On Vitali's covering theorem"  ''Vestnik Moskov. Univ. Ser. 1. Mat. Mech.'' :  3  (1989)  pp. 11–14  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.P. Dolzhenko,  "Boundary properties of arbitrary functions"  ''Math. USSR Izv.'' , '''1''' :  1  (1967)  pp. 1–12  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''31''' :  1  (1967)  pp. 3–14</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Zajiček,  "Sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383051.png" />-porosity and sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383052.png" />-porosity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383053.png" />"  ''Casopis. Pešt. Mat.'' , '''101'''  (1976)  pp. 350–359</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Foran,  P.D. Humke,  "Some set-theoretic properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383054.png" />-porous sets"  ''Real Anal. Exch.'' , '''6''' :  1  (1980/81)  pp. 114–119</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J. Tkadlec,  "Constructions of some non-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383055.png" />-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383056.png" />-porous sets on the real line"  ''Real Anal. Exch.'' , '''9''' :  2  (1983/84)  pp. 473–482</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S.J. Agronsky,  A.M. Bruckner,  "Local compactness and porosity in metric spaces"  ''Real Anal. Exch.'' , '''11''' :  2  (1985/86)  pp. 365–379</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  Yu.A. Shevchenko,  "On Vitali's covering theorem"  ''Vestnik Moskov. Univ. Ser. 1. Mat. Mech.'' :  3  (1989)  pp. 11–14  (In Russian)</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


of a set $ E $ in a metric space $ X $

A point $ x _ {0} \in X $ for which there exists a sequence of open balls $ B _ {k} $ with radii $ r _ {k} \rightarrow 0 $ and common centre at the point $ x _ {0} $, such that for any $ k = 1 , 2 \dots $ there is an open ball $ G _ {k} \subset B _ {k} \setminus E $ with radius $ \rho _ {k} \geq C r _ {k} $, where $ C $ is positive and independent of $ k $( but, generally speaking, depends on $ x _ {0} $ and $ E $). A set $ E $ is called porous if any point in it is a porosity point of it. A set $ E $ is called $ \sigma $- porous if it can be represented as a finite or countable union of porous sets (see [1]). A porosity point of $ E $ is a porosity point of its closure $ \overline{E}\; $. If $ X = \mathbf R ^ {n} $, a porosity point of a set $ E \subset X $ is not a Lebesgue density point either of $ E $ or of $ \overline{E}\; $. Any porous or $ \sigma $- porous set $ E \subset \mathbf R ^ {n} $ is of the first Baire category (cf. Baire classes) and of Lebesgue measure zero in $ \mathbf R ^ {n} $. The converse of this statement, generally speaking, does not hold: There even exist nowhere-dense perfect sets $ E \subset \mathbf R ^ {1} $ of measure zero that are not $ \sigma $- porous (see [2]).

Sometimes, in the case of an infinite-dimensional space $ X $, porous and $ \sigma $- porous sets take the role of sets of measure zero. If $ X = \mathbf R ^ {n} $ and $ h: [ 0, \infty ) \rightarrow \mathbf R $ is an increasing continuous function with $ h( 0) = 0 $, then $ x _ {0} \in X $ is called an $ h $- porous point of a set $ E \subset X $ if $ h ( \rho _ {k} ) \geq Cr _ {k} $, using the same notations ( $ C $ is independent of $ k $). The concepts of $ h $- porous and $ \sigma $- $ h $- porous sets are defined accordingly. In the case $ h( t)/t \rightarrow \infty $( $ t \rightarrow 0 $), a $ h $- porous set $ E \subset X = \mathbf R ^ {n} $ may be a set of positive Lebesgue measure.

References

[1] E.P. Dolzhenko, "Boundary properties of arbitrary functions" Math. USSR Izv. , 1 : 1 (1967) pp. 1–12 Izv. Akad. Nauk. SSSR Ser. Mat. , 31 : 1 (1967) pp. 3–14
[2] L. Zajiček, "Sets of -porosity and sets of -porosity " Casopis. Pešt. Mat. , 101 (1976) pp. 350–359
[3] J. Foran, P.D. Humke, "Some set-theoretic properties of -porous sets" Real Anal. Exch. , 6 : 1 (1980/81) pp. 114–119
[4] J. Tkadlec, "Constructions of some non---porous sets on the real line" Real Anal. Exch. , 9 : 2 (1983/84) pp. 473–482
[5] S.J. Agronsky, A.M. Bruckner, "Local compactness and porosity in metric spaces" Real Anal. Exch. , 11 : 2 (1985/86) pp. 365–379
[6] Yu.A. Shevchenko, "On Vitali's covering theorem" Vestnik Moskov. Univ. Ser. 1. Mat. Mech. : 3 (1989) pp. 11–14 (In Russian)
How to Cite This Entry:
Porosity point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Porosity_point&oldid=14614
This article was adapted from an original article by E.P. Dolzhenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article