Difference between revisions of "Ultraspherical polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | u0950301.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/U095/U.0905030 Ultraspherical polynomials, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Gegenbauer polynomials'' | ''Gegenbauer polynomials'' | ||
− | [[Orthogonal polynomials|Orthogonal polynomials]] | + | [[Orthogonal polynomials|Orthogonal polynomials]] $ P _ {n} ( x, \lambda ) $ |
+ | on the interval $ [ - 1 , 1 ] $ | ||
+ | with the weight function $ h ( x) = ( 1 - x ^ {2} ) ^ {\lambda - 1 / 2 } $; | ||
+ | a particular case of the [[Jacobi polynomials|Jacobi polynomials]] for $ \alpha = \beta = \lambda - 1 / 2 $( | ||
+ | $ \lambda > - 1 / 2 $); | ||
+ | the [[Legendre polynomials|Legendre polynomials]] $ P _ {n} ( x) $ | ||
+ | are a particular case of the ultraspherical polynomials: $ P _ {n} ( x) = P _ {n} ( x , 1 / 2 ) $. | ||
For ultraspherical polynomials one has the standardization | For ultraspherical polynomials one has the standardization | ||
− | + | $$ | |
+ | P _ {n} ( x , \lambda ) \equiv \ | ||
+ | C _ {n} ^ {( \lambda ) } ( x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{( - 2 ) ^ {n} }{n!} | |
+ | |||
+ | \frac{\Gamma ( n + \lambda ) \Gamma ( n | ||
+ | + 2 \lambda ) }{\Gamma ( \lambda ) \Gamma ( 2 n + 2 \lambda ) | ||
+ | } | ||
+ | ( 1 - x ^ {2} ) ^ {- \lambda + 1 / 2 } \times | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \times | ||
+ | |||
+ | \frac{d ^ {n} }{d x ^ {n} } | ||
+ | [ ( 1 - x ^ {2} ) ^ {n + \lambda - 1 / 2 } ] | ||
+ | $$ | ||
and the representation | and the representation | ||
− | + | $$ | |
+ | C _ {n} ^ {( \lambda ) } ( x) = \ | ||
+ | \sum _ { k= } 0 ^ { {[ } n / 2 ] } ( - 1 ) ^ {k} | ||
+ | |||
+ | \frac{\Gamma ( n - k + \lambda ) }{\Gamma ( \lambda ) k ! ( n - 2 k ) ! } | ||
+ | |||
+ | ( 2 x ) ^ {n-} 2k . | ||
+ | $$ | ||
The ultraspherical polynomials are the coefficients of the power series expansion of the generating function | The ultraspherical polynomials are the coefficients of the power series expansion of the generating function | ||
− | + | $$ | |
+ | |||
+ | \frac{1}{( 1 - 2 x w + w ^ {2} ) ^ \lambda } | ||
+ | = \ | ||
+ | \sum _ { n= } 0 ^ \infty | ||
+ | C _ {n} ^ {( \lambda ) } ( x) w ^ {n} . | ||
+ | $$ | ||
− | The ultraspherical polynomial | + | The ultraspherical polynomial $ C _ {n} ^ {( \lambda ) } ( x) $ |
+ | satisfies the differential equation | ||
− | + | $$ | |
+ | ( 1 - x ^ {2} ) y ^ {\prime\prime} - | ||
+ | ( 2 \lambda + 1 ) x y ^ \prime | ||
+ | + n ( n + 2 \lambda ) y = 0 . | ||
+ | $$ | ||
More commonly used are the formulas | More commonly used are the formulas | ||
− | + | $$ | |
+ | ( n + 1 ) C _ {n+} 1 ^ {( \lambda ) } ( x) = \ | ||
+ | 2 ( n + \lambda ) x C _ {n} ^ {( \lambda ) } ( x) - | ||
+ | ( n + 2 \lambda - 1 ) C _ {n-} 1 ^ {( \lambda ) } ( x) , | ||
+ | $$ | ||
− | + | $$ | |
+ | C _ {n} ^ {( \lambda ) } ( - x ) = ( - 1 ) ^ {n} C _ {n} ^ {( \lambda ) } ( x) , | ||
+ | $$ | ||
− | + | $$ | |
− | + | \frac{d}{dx} | |
+ | [ C _ {n} ^ {( \lambda ) } ( x) ] | ||
+ | = 2 \lambda C _ {n-} 1 ^ {( \lambda + 1) } ( x) , | ||
+ | $$ | ||
− | + | $$ | |
+ | C _ {n} ^ {( \lambda ) } ( \pm 1 ) = ( \pm 1 ) ^ {n} | ||
− | + | \frac{2 \lambda ( 2 \lambda + 1 ) \dots ( 2 \lambda + n - 1 ) }{n!\ } | |
+ | = | ||
+ | $$ | ||
+ | $$ | ||
+ | = \ | ||
+ | ( \pm 1 ) ^ {n} \left ( \begin{array}{c} | ||
+ | n + 2 \lambda - 1 \\ | ||
+ | n | ||
+ | \end{array} | ||
+ | \right ) . | ||
+ | $$ | ||
+ | For references see [[Orthogonal polynomials|Orthogonal polynomials]]. | ||
====Comments==== | ====Comments==== | ||
See [[Spherical harmonics|Spherical harmonics]] for a group-theoretic interpretation. Ultraspherical polynomials are also connected with Jacobi polynomials by the quadratic transformations | See [[Spherical harmonics|Spherical harmonics]] for a group-theoretic interpretation. Ultraspherical polynomials are also connected with Jacobi polynomials by the quadratic transformations | ||
− | + | $$ | |
+ | C _ {2n} ^ {( \lambda ) } ( x) = \ | ||
+ | \textrm{ const } P _ {n} ^ {( \lambda - 1/2 , - 1/2) } ( 2x ^ {2} - 1) , | ||
+ | $$ | ||
− | + | $$ | |
+ | C _ {2n+ 1 } ^ {( \lambda ) } ( x) = \textrm{ const } x P _ {n} ^ {( \lambda - 1/2, 1/2) } ( 2x ^ {2} - 1) . | ||
+ | $$ | ||
− | See [[#References|[a1]]] for | + | See [[#References|[a1]]] for $ q $- |
+ | ultraspherical polynomials. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.A. Askey, M.E.H. Ismail, "A generalization of ultraspherical polynomials" P. Erdös (ed.) , ''Studies in Pure Mathematics to the Memory of Paul Turán'' , Birkhäuser (1983) pp. 55–78</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.A. Askey, M.E.H. Ismail, "A generalization of ultraspherical polynomials" P. Erdös (ed.) , ''Studies in Pure Mathematics to the Memory of Paul Turán'' , Birkhäuser (1983) pp. 55–78</TD></TR></table> |
Revision as of 08:27, 6 June 2020
Gegenbauer polynomials
Orthogonal polynomials $ P _ {n} ( x, \lambda ) $ on the interval $ [ - 1 , 1 ] $ with the weight function $ h ( x) = ( 1 - x ^ {2} ) ^ {\lambda - 1 / 2 } $; a particular case of the Jacobi polynomials for $ \alpha = \beta = \lambda - 1 / 2 $( $ \lambda > - 1 / 2 $); the Legendre polynomials $ P _ {n} ( x) $ are a particular case of the ultraspherical polynomials: $ P _ {n} ( x) = P _ {n} ( x , 1 / 2 ) $.
For ultraspherical polynomials one has the standardization
$$ P _ {n} ( x , \lambda ) \equiv \ C _ {n} ^ {( \lambda ) } ( x) = $$
$$ = \ \frac{( - 2 ) ^ {n} }{n!} \frac{\Gamma ( n + \lambda ) \Gamma ( n + 2 \lambda ) }{\Gamma ( \lambda ) \Gamma ( 2 n + 2 \lambda ) } ( 1 - x ^ {2} ) ^ {- \lambda + 1 / 2 } \times $$
$$ \times \frac{d ^ {n} }{d x ^ {n} } [ ( 1 - x ^ {2} ) ^ {n + \lambda - 1 / 2 } ] $$
and the representation
$$ C _ {n} ^ {( \lambda ) } ( x) = \ \sum _ { k= } 0 ^ { {[ } n / 2 ] } ( - 1 ) ^ {k} \frac{\Gamma ( n - k + \lambda ) }{\Gamma ( \lambda ) k ! ( n - 2 k ) ! } ( 2 x ) ^ {n-} 2k . $$
The ultraspherical polynomials are the coefficients of the power series expansion of the generating function
$$ \frac{1}{( 1 - 2 x w + w ^ {2} ) ^ \lambda } = \ \sum _ { n= } 0 ^ \infty C _ {n} ^ {( \lambda ) } ( x) w ^ {n} . $$
The ultraspherical polynomial $ C _ {n} ^ {( \lambda ) } ( x) $ satisfies the differential equation
$$ ( 1 - x ^ {2} ) y ^ {\prime\prime} - ( 2 \lambda + 1 ) x y ^ \prime + n ( n + 2 \lambda ) y = 0 . $$
More commonly used are the formulas
$$ ( n + 1 ) C _ {n+} 1 ^ {( \lambda ) } ( x) = \ 2 ( n + \lambda ) x C _ {n} ^ {( \lambda ) } ( x) - ( n + 2 \lambda - 1 ) C _ {n-} 1 ^ {( \lambda ) } ( x) , $$
$$ C _ {n} ^ {( \lambda ) } ( - x ) = ( - 1 ) ^ {n} C _ {n} ^ {( \lambda ) } ( x) , $$
$$ \frac{d}{dx} [ C _ {n} ^ {( \lambda ) } ( x) ] = 2 \lambda C _ {n-} 1 ^ {( \lambda + 1) } ( x) , $$
$$ C _ {n} ^ {( \lambda ) } ( \pm 1 ) = ( \pm 1 ) ^ {n} \frac{2 \lambda ( 2 \lambda + 1 ) \dots ( 2 \lambda + n - 1 ) }{n!\ } = $$
$$ = \ ( \pm 1 ) ^ {n} \left ( \begin{array}{c} n + 2 \lambda - 1 \\ n \end{array} \right ) . $$
For references see Orthogonal polynomials.
Comments
See Spherical harmonics for a group-theoretic interpretation. Ultraspherical polynomials are also connected with Jacobi polynomials by the quadratic transformations
$$ C _ {2n} ^ {( \lambda ) } ( x) = \ \textrm{ const } P _ {n} ^ {( \lambda - 1/2 , - 1/2) } ( 2x ^ {2} - 1) , $$
$$ C _ {2n+ 1 } ^ {( \lambda ) } ( x) = \textrm{ const } x P _ {n} ^ {( \lambda - 1/2, 1/2) } ( 2x ^ {2} - 1) . $$
See [a1] for $ q $- ultraspherical polynomials.
References
[a1] | R.A. Askey, M.E.H. Ismail, "A generalization of ultraspherical polynomials" P. Erdös (ed.) , Studies in Pure Mathematics to the Memory of Paul Turán , Birkhäuser (1983) pp. 55–78 |
Ultraspherical polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ultraspherical_polynomials&oldid=14267