Namespaces
Variants
Actions

Difference between revisions of "Linear ordinary differential equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
l0593501.png
 +
$#A+1 = 174 n = 0
 +
$#C+1 = 174 : ~/encyclopedia/old_files/data/L059/L.0509350 Linear ordinary differential equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An ordinary differential equation (cf. [[Differential equation, ordinary|Differential equation, ordinary]]) that is linear in the unknown function of one independent variable and its derivatives, that is, an equation of the form
 
An ordinary differential equation (cf. [[Differential equation, ordinary|Differential equation, ordinary]]) that is linear in the unknown function of one independent variable and its derivatives, that is, an equation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
x  ^ {(} n) + a _ {1} ( t) x  ^ {(} n- 1) + \dots +
 +
a _ {n} ( t) x  = f ( t) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593502.png" /> is the unknown function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593503.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593504.png" /> are given functions; the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593505.png" /> is called the order of equation (1) (below the general theory of linear ordinary differential equations is presented; for equations of the second order see also [[Linear ordinary differential equation of the second order|Linear ordinary differential equation of the second order]]).
+
where $  x ( t) $
 +
is the unknown function and $  a _ {i} ( t) $,  
 +
$  f ( t) $
 +
are given functions; the number $  n $
 +
is called the order of equation (1) (below the general theory of linear ordinary differential equations is presented; for equations of the second order see also [[Linear ordinary differential equation of the second order|Linear ordinary differential equation of the second order]]).
  
1) If in (1) the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593506.png" /> are continuous on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593507.png" />, then for any numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593508.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l0593509.png" /> there is a unique solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935010.png" /> of (1) defined on the whole interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935011.png" /> and satisfying the initial conditions
+
1) If in (1) the functions $  a _ {1} \dots a _ {n} , f $
 +
are continuous on the interval $  ( a , b ) $,  
 +
then for any numbers $  x _ {0} , x _ {0}  ^  \prime  \dots x _ {0}  ^ {(} n- 1) $
 +
and $  t _ {0} \in ( a , b ) $
 +
there is a unique solution $  x ( t) $
 +
of (1) defined on the whole interval $  ( a , b ) $
 +
and satisfying the initial conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935012.png" /></td> </tr></table>
+
$$
 +
x ( t _ {0} )  = x _ {0} ,\
 +
x  ^  \prime  ( t _ {0} )  = x _ {0}  ^  \prime  \dots
 +
x  ^ {(} n- 1) ( t _ {0} )  = x _ {0}  ^ {(} n- 1) .
 +
$$
  
 
The equation
 
The equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
x  ^ {(} n) + a _ {1} ( t) x  ^ {(} n- 1) + \dots + a _ {n} ( t) x  = 0
 +
$$
  
is called the homogeneous equation corresponding to the inhomogeneous equation (1). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935014.png" /> is a solution of (2) and
+
is called the homogeneous equation corresponding to the inhomogeneous equation (1). If $  x ( t) $
 +
is a solution of (2) and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935015.png" /></td> </tr></table>
+
$$
 +
x ( t _ {0} )  = x  ^  \prime  ( t _ {0} )  = \dots = \
 +
x  ^ {(} n- 1) ( t _ {0} )  = 0 ,
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935016.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935017.png" /> are solutions of (2), then any linear combination
+
then $  x ( t) \equiv 0 $.  
 +
If $  x _ {1} ( t) \dots x _ {m} ( t) $
 +
are solutions of (2), then any linear combination
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935018.png" /></td> </tr></table>
+
$$
 +
C _ {1} x _ {1} ( t) + \dots + C _ {m} x _ {m} ( t)
 +
$$
  
is a solution of (2). If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935019.png" /> functions
+
is a solution of (2). If the $  n $
 +
functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
x _ {1} ( t) \dots x _ {n} ( t)
 +
$$
  
are linearly independent solutions of (2), then for every solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935021.png" /> of (2) there are constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935022.png" /> such that
+
are linearly independent solutions of (2), then for every solution $  x ( t) $
 +
of (2) there are constants $  C _ {1} \dots C _ {n} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
x ( t)  = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) .
 +
$$
  
Thus, if (3) is a [[Fundamental system of solutions|fundamental system of solutions]] of (2) (i.e. a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935024.png" /> linearly independent solutions of (2)), then its [[General solution|general solution]] is given by (4), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935025.png" /> are arbitrary constants. For every non-singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935026.png" /> matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935027.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935028.png" /> there is a fundamental system of solutions (3) of equation (2) such that
+
Thus, if (3) is a [[Fundamental system of solutions|fundamental system of solutions]] of (2) (i.e. a system of $  n $
 +
linearly independent solutions of (2)), then its [[General solution|general solution]] is given by (4), where $  C _ {1} \dots C _ {n} $
 +
are arbitrary constants. For every non-singular $  n \times n $
 +
matrix $  B = \| b _ {ij} \| $
 +
and every $  t _ {0} \in ( a , b ) $
 +
there is a fundamental system of solutions (3) of equation (2) such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935029.png" /></td> </tr></table>
+
$$
 +
x _ {i}  ^ {(} n- j) ( t _ {0} )  = b _ {ij} ,\ \
 +
i , j = 1 \dots n .
 +
$$
  
 
For the functions (3) the determinant
 
For the functions (3) the determinant
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935030.png" /></td> </tr></table>
+
$$
 +
W ( t)  =   \mathop{\rm det} \
 +
\left \|
 +
\begin{array}{ccc}
 +
x _ {1} ( t)  &\dots  &x _ {n} ( t)  \\
 +
x _ {1}  ^  \prime  &\dots  &x _ {n}  ^  \prime  ( t)  \\
 +
\dots  &\dots  &\dots  \\
 +
x _ {1}  ^ {(} n- 1) ( t)  &\dots  &x _ {n}  ^ {(} n- 1) ( t)  \\
 +
\end{array}
 +
\
 +
\right \|
 +
$$
  
is called the Wronski determinant, or [[Wronskian|Wronskian]]. If (3) is a fundamental system of solutions of (2), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935031.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935033.png" /> for at least one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935035.png" /> and the solutions (3) of equation (2) are linearly dependent in this case. For the Wronskian of the solutions (3) of equation (2) the [[Liouville–Ostrogradski formula|Liouville–Ostrogradski formula]] holds:
+
is called the Wronski determinant, or [[Wronskian|Wronskian]]. If (3) is a fundamental system of solutions of (2), then $  W ( t) \neq 0 $
 +
for all $  t \in ( a , b ) $.  
 +
If $  W ( t _ {0} ) = 0 $
 +
for at least one point $  t _ {0} $,  
 +
then $  W ( t) \equiv 0 $
 +
and the solutions (3) of equation (2) are linearly dependent in this case. For the Wronskian of the solutions (3) of equation (2) the [[Liouville–Ostrogradski formula|Liouville–Ostrogradski formula]] holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935036.png" /></td> </tr></table>
+
$$
 +
W ( t)  = W ( t _ {0} ) \
 +
\mathop{\rm exp} \left ( - \int\limits _ {t _ {0} } ^ { t }
 +
a _ {1} ( \tau )  d \tau \right ) .
 +
$$
  
The general solution of (1) is the sum of the general solution of the homogeneous equation (2) and a particular solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935037.png" /> of the inhomogeneous equation (1), and is given by the formula
+
The general solution of (1) is the sum of the general solution of the homogeneous equation (2) and a particular solution $  x _ {0} ( t) $
 +
of the inhomogeneous equation (1), and is given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935038.png" /></td> </tr></table>
+
$$
 +
x ( t)  = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) + x _ {0} ( t) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935039.png" /> is a fundamental system of solutions of (2) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935040.png" /> are arbitrary constants. If a fundamental system of solutions (3) of equation (2) is known, then a particular solution of the inhomogeneous equation (1) can be found by the method of [[Variation of constants|variation of constants]].
+
where $  x _ {1} ( t) \dots x _ {n} ( t) $
 +
is a fundamental system of solutions of (2) and $  C _ {1} \dots C _ {n} $
 +
are arbitrary constants. If a fundamental system of solutions (3) of equation (2) is known, then a particular solution of the inhomogeneous equation (1) can be found by the method of [[Variation of constants|variation of constants]].
  
2) A system of linear ordinary differential equations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935042.png" /> is a system
+
2) A system of linear ordinary differential equations of order $  n $
 +
is a system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935043.png" /></td> </tr></table>
+
$$
 +
\dot{x} _ {i}  = \sum _ { j= } 1 ^ { n }
 +
a _ {ij} ( t) x _ {i} + b _ {i} ( t),\ \
 +
i = 1 \dots n ,
 +
$$
  
 
or, in vector form,
 
or, in vector form,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
\dot{x}  = A ( t) x + b ( t) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935045.png" /> is an unknown column vector, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935046.png" /> is a square matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935048.png" /> is a given vector function. Suppose also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935050.png" /> are continuous on some interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935051.png" />. In this case, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935053.png" /> there is a unique solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935054.png" /> of the system (5) defined on the whole interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935055.png" /> and satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935056.png" />.
+
where $  x ( t) \in \mathbf R  ^ {n} $
 +
is an unknown column vector, $  A ( t) $
 +
is a square matrix of order $  n $
 +
and $  b ( t) $
 +
is a given vector function. Suppose also that $  A ( t) $
 +
and $  b ( t) $
 +
are continuous on some interval $  ( a , b ) $.  
 +
In this case, for any $  t _ {0} \in ( a , b ) $
 +
and $  x _ {0} \in \mathbf R  ^ {n} $
 +
there is a unique solution $  x ( t) $
 +
of the system (5) defined on the whole interval $  ( a , b ) $
 +
and satisfying the initial condition $  x ( t _ {0} ) = x _ {0} $.
  
 
The linear system
 
The linear system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
\dot{x}  = A ( t) x
 +
$$
  
is called the homogeneous system corresponding to the inhomogeneous system (5). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935058.png" /> is a solution of (6) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935060.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935061.png" /> are solutions, then any linear combination
+
is called the homogeneous system corresponding to the inhomogeneous system (5). If $  x ( t) $
 +
is a solution of (6) and $  x ( t _ {0} ) = 0 $,  
 +
then $  x ( t) \equiv 0 $;  
 +
if $  x _ {1} ( t) \dots x _ {m} ( t) $
 +
are solutions, then any linear combination
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935062.png" /></td> </tr></table>
+
$$
 +
C _ {1} x _ {1} ( t) + \dots + C _ {m} x _ {m} ( t)
 +
$$
  
is a solution of (6); if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935063.png" /> are linearly independent solutions of (6), then the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935064.png" /> are linearly independent for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935065.png" />. If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935066.png" /> vector functions
+
is a solution of (6); if $  x _ {1} ( t) \dots x _ {m} ( t) $
 +
are linearly independent solutions of (6), then the vectors $  x _ {1} ( t) \dots x _ {m} ( t) $
 +
are linearly independent for any $  t \in ( a , b ) $.  
 +
If the $  n $
 +
vector functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
 +
x _ {1} ( t) \dots x _ {n} ( t)
 +
$$
  
form a fundamental system of solutions of (6), then for every solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935068.png" /> of (6) there are constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935069.png" /> such that
+
form a fundamental system of solutions of (6), then for every solution $  x ( t) $
 +
of (6) there are constants $  C _ {1} \dots C _ {n} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935070.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
+
$$ \tag{8 }
 +
x( t)  = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t).
 +
$$
  
Thus, formula (8) gives the general solution of (6). For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935071.png" /> and any linearly independent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935072.png" /> there is a fundamental system of solutions (7) of the system (6) such that
+
Thus, formula (8) gives the general solution of (6). For any $  t _ {0} \in ( a , b ) $
 +
and any linearly independent vectors $  a _ {1} \dots a _ {n} \in \mathbf R  ^ {n} $
 +
there is a fundamental system of solutions (7) of the system (6) such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935073.png" /></td> </tr></table>
+
$$
 +
x _ {1} ( t _ {0} )  = a _ {1} \dots
 +
x _ {n} ( t _ {0} )  = a _ {n} .
 +
$$
  
For vector functions (7) that are solutions of (6), the determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935074.png" /> of the matrix
+
For vector functions (7) that are solutions of (6), the determinant $  W ( t) $
 +
of the matrix
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935075.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
+
$$ \tag{9 }
 +
X ( t) = \
 +
\left \|
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935076.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935077.png" />-th component of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935078.png" />-th solution, is called the Wronski determinant, or [[Wronskian|Wronskian]]. If (7) is a fundamental system of solutions of (6), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935079.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935080.png" /> and (9) is called a fundamental matrix. If the solutions (7) of the system (6) are linearly dependent for at least one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935081.png" />, then they are linearly dependent for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935082.png" />, and in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935083.png" />. For the Wronskian of the solutions (7) of the system (6) Liouville's formula holds:
+
\begin{array}{ccc}
 +
x _ {11} ( t) &\dots  &x _ {n1} ( t) \\
 +
\dots  &\dots  &\dots  \\
 +
x _ {1n} ( t) &\dots  &x _ {nn} ( t) \\
 +
\end{array}
 +
\
 +
\right \| ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935084.png" /></td> </tr></table>
+
where  $  x _ {ij} ( t) $
 +
is the  $  j $-
 +
th component of the  $  i $-
 +
th solution, is called the Wronski determinant, or [[Wronskian|Wronskian]]. If (7) is a fundamental system of solutions of (6), then  $  W ( t) \neq 0 $
 +
for all  $  t \in ( a , b ) $
 +
and (9) is called a fundamental matrix. If the solutions (7) of the system (6) are linearly dependent for at least one point  $  t _ {0} $,
 +
then they are linearly dependent for any  $  t \in ( a , b ) $,
 +
and in this case  $  W ( t) \equiv 0 $.  
 +
For the Wronskian of the solutions (7) of the system (6) Liouville's formula holds:
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935085.png" /> is the trace of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935086.png" />. The matrix (9) satisfies the matrix equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935087.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935088.png" /> is a [[Fundamental matrix|fundamental matrix]] of the system (6), then for every other fundamental matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935089.png" /> of this system there is a constant non-singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935090.png" /> matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935091.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935093.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935094.png" /> is the unit matrix, then the fundamental matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935095.png" /> is said to be normalized at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935096.png" /> and the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935097.png" /> gives the solution of (6) satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935098.png" />.
+
$$
 +
= W ( t _ {0} )  \mathop{\rm exp}
 +
\left ( \int\limits _ { t _ 0 } ^ { t }  \mathop{\rm Tr} ( A ( \tau ) ) d \tau \right ) ,
 +
$$
  
If the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935099.png" /> commutes with its integral, then the fundamental matrix of (6) normalized at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350100.png" /> is given by the formula
+
where  $  \mathop{\rm Tr} ( A ( \tau ) ) = a _ {11} ( \tau ) + \dots + a _ {nn} ( \tau ) $
 +
is the trace of the matrix  $  A ( \tau ) $.
 +
The matrix (9) satisfies the matrix equation  $  \dot{X} = A ( t) X ( t) $.
 +
If $  X ( t) $
 +
is a [[Fundamental matrix|fundamental matrix]] of the system (6), then for every other fundamental matrix  $  Y ( t) $
 +
of this system there is a constant non-singular  $  n \times n $
 +
matrix $  C $
 +
such that  $  Y ( t) = X ( t) C $.
 +
If  $  X ( t _ {0} ) = E $,
 +
where  $  E $
 +
is the unit matrix, then the fundamental matrix $  X ( t) $
 +
is said to be normalized at the point $  t _ {0} $
 +
and the formula  $  x ( t) = X ( t) x _ {0} $
 +
gives the solution of (6) satisfying the initial condition  $  x ( t _ {0} ) = x _ {0} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350101.png" /></td> </tr></table>
+
If the matrix  $  A ( t) $
 +
commutes with its integral, then the fundamental matrix of (6) normalized at the point  $  t _ {0} \in ( a , b ) $
 +
is given by the formula
  
In particular, for a constant matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350102.png" /> the fundamental matrix normalized at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350103.png" /> is given by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350104.png" />. The general solution of (5) is the sum of the general solution of the homogeneous system (6) and a particular solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350105.png" /> of (5) and is given by the formula
+
$$
 +
X ( t)  =   \mathop{\rm exp}
 +
\left ( \int\limits _ {t _ {0} } ^ { t }
 +
A ( \tau ) d \tau \right ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350106.png" /></td> </tr></table>
+
In particular, for a constant matrix  $  A $
 +
the fundamental matrix normalized at the point  $  t _ {0} $
 +
is given by the formula  $  X ( t) = \mathop{\rm exp}  A ( t - t _ {0} ) $.  
 +
The general solution of (5) is the sum of the general solution of the homogeneous system (6) and a particular solution  $  x _ {0} ( t) $
 +
of (5) and is given by the formula
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350107.png" /> is a fundamental system of solutions of (6) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350108.png" /> are arbitrary constants. If a fundamental system of solutions (7) of the system (6) is known, then a particular solution of the inhomogeneous system (5) can be found by the method of [[Variation of constants|variation of constants]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350109.png" /> is a fundamental matrix of the system (6), then the formula
+
$$
 +
x ( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) + x _ {0} ( t) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350110.png" /></td> </tr></table>
+
where  $  x _ {1} ( t) \dots x _ {n} ( t) $
 +
is a fundamental system of solutions of (6) and  $  C _ {1} \dots C _ {n} $
 +
are arbitrary constants. If a fundamental system of solutions (7) of the system (6) is known, then a particular solution of the inhomogeneous system (5) can be found by the method of [[Variation of constants|variation of constants]]. If  $  X ( t) $
 +
is a fundamental matrix of the system (6), then the formula
  
gives the solution of (5) satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350111.png" />.
+
$$
 +
x ( t) = X ( t) X  ^ {-} 1 ( t _ {0} ) x _ {0} +
 +
\int\limits _ {t _ {0} } ^ { t }  X ( t) X  ^ {-} 1 ( \tau )
 +
b ( \tau )  d \tau
 +
$$
  
3) Suppose that in the system (5) and (6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350112.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350113.png" /> are continuous on a half-line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350114.png" />. All solutions of (5) are simultaneously either stable or unstable, so the system (5) is said to be stable (uniformly stable, asymptotically stable) if all its solutions are stable (respectively, uniformly stable, asymptotically stable, cf. [[Asymptotically-stable solution|Asymptotically-stable solution]]; [[Lyapunov stability|Lyapunov stability]]). The system (5) is stable (uniformly stable, asymptotically stable) if and only if the system (6) is stable (respectively, uniformly stable, asymptotically stable). Therefore, in the investigation of questions on the [[Stability|stability]] of linear differential systems it suffices to consider only homogeneous systems.
+
gives the solution of (5) satisfying the initial condition  $  x ( t _ {0} ) = x _ {0} $.
  
The system (6) is stable if and only if all its solutions are bounded on the half-line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350115.png" />. The system (6) is asymptotically stable if and only if
+
3) Suppose that in the system (5) and (6)  $  A ( t) $
 +
and  $  b ( t) $
 +
are continuous on a half-line  $  [ a , + \infty ) $.
 +
All solutions of (5) are simultaneously either stable or unstable, so the system (5) is said to be stable (uniformly stable, asymptotically stable) if all its solutions are stable (respectively, uniformly stable, asymptotically stable, cf. [[Asymptotically-stable solution|Asymptotically-stable solution]]; [[Lyapunov stability|Lyapunov stability]]). The system (5) is stable (uniformly stable, asymptotically stable) if and only if the system (6) is stable (respectively, uniformly stable, asymptotically stable). Therefore, in the investigation of questions on the [[Stability|stability]] of linear differential systems it suffices to consider only homogeneous systems.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350116.png" /></td> <td valign="top" style="width:5%;text-align:right;">(10)</td></tr></table>
+
The system (6) is stable if and only if all its solutions are bounded on the half-line  $  [ a , + \infty ) $.  
 +
The system (6) is asymptotically stable if and only if
  
for all its solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350117.png" />. The latter condition is equivalent to (10) being satisfied for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350118.png" /> solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350119.png" /> of the system that form a fundamental system of solutions. An asymptotically-stable system (6) is asymptotically stable in the large.
+
$$ \tag{10 }
 +
\lim\limits _ {t \rightarrow + \infty } \
 +
x ( t)  =  0
 +
$$
 +
 
 +
for all its solutions $  x ( t) $.  
 +
The latter condition is equivalent to (10) being satisfied for $  n $
 +
solutions $  x _ {1} ( t) \dots x _ {n} ( t) $
 +
of the system that form a fundamental system of solutions. An asymptotically-stable system (6) is asymptotically stable in the large.
  
 
A linear system with constant coefficients
 
A linear system with constant coefficients
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350120.png" /></td> <td valign="top" style="width:5%;text-align:right;">(11)</td></tr></table>
+
$$ \tag{11 }
 +
\dot{x}  = A x
 +
$$
  
is stable if and only if all eigen values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350121.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350122.png" /> have non-positive real parts (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350123.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350124.png" />), and the eigen values with zero real part may have only simple [[Elementary divisors|elementary divisors]]. The system (11) is asymptotically stable if and only if all eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350125.png" /> have negative real parts.
+
is stable if and only if all eigen values $  \lambda _ {1} \dots \lambda _ {n} $
 +
of $  A $
 +
have non-positive real parts (that is, $  \mathop{\rm Re}  \lambda _ {i} \leq  0 $,  
 +
$  i = 1 \dots n $),  
 +
and the eigen values with zero real part may have only simple [[Elementary divisors|elementary divisors]]. The system (11) is asymptotically stable if and only if all eigen values of $  A $
 +
have negative real parts.
  
 
4) The system
 
4) The system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350126.png" /></td> <td valign="top" style="width:5%;text-align:right;">(12)</td></tr></table>
+
$$ \tag{12 }
 +
\dot{y}  = - A  ^ {T} ( t) y ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350127.png" /> is the transposed matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350128.png" />, is called the adjoint system of the system (6). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350129.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350130.png" /> are arbitrary solutions of (6) and (12), respectively, then the scalar product
+
where $  A  ^ {T} ( t) $
 +
is the transposed matrix of $  A ( t) $,  
 +
is called the adjoint system of the system (6). If $  x ( t) $
 +
and $  y ( t) $
 +
are arbitrary solutions of (6) and (12), respectively, then the scalar product
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350131.png" /></td> </tr></table>
+
$$
 +
( x ( t) , y ( t) )  \equiv  \textrm{ const } .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350132.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350133.png" /> are fundamental matrices of solutions of (6) and (12), respectively, then
+
If $  X ( t) $
 +
and $  Y ( t) $
 +
are fundamental matrices of solutions of (6) and (12), respectively, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350134.png" /></td> </tr></table>
+
$$
 +
Y  ^ {T} ( t) X ( t)  = C ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350135.png" /> is a non-singular constant matrix.
+
where $  C $
 +
is a non-singular constant matrix.
  
 
5) The investigation of various special properties of linear systems, particularly the question of stability, is connected with the concept of the [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]] of a solution and the first method in the theory of stability developed by A.M. Lyapunov (see [[Regular linear system|Regular linear system]]; [[Reducible linear system|Reducible linear system]]; [[Lyapunov stability|Lyapunov stability]]).
 
5) The investigation of various special properties of linear systems, particularly the question of stability, is connected with the concept of the [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]] of a solution and the first method in the theory of stability developed by A.M. Lyapunov (see [[Regular linear system|Regular linear system]]; [[Reducible linear system|Reducible linear system]]; [[Lyapunov stability|Lyapunov stability]]).
  
6) Two systems of the form (6) are said to be asymptotically equivalent if there is a one-to-one correspondence between their solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350136.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350137.png" /> such that
+
6) Two systems of the form (6) are said to be asymptotically equivalent if there is a one-to-one correspondence between their solutions $  x _ {1} ( t) $
 +
and $  x _ {2} ( t) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350138.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {t \rightarrow \infty } \
 +
( x _ {1} ( t) - x _ {2} ( t) )  = 0 .
 +
$$
  
If the system (11) with a constant matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350139.png" /> is stable, then it is asymptotically equivalent to the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350140.png" />, where the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350141.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350142.png" /> and
+
If the system (11) with a constant matrix $  A $
 +
is stable, then it is asymptotically equivalent to the system $  \dot{x} = ( A + B ( t)) x $,  
 +
where the matrix $  B ( t) $
 +
is continuous on $  [ a , + \infty ) $
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350143.png" /></td> <td valign="top" style="width:5%;text-align:right;">(13)</td></tr></table>
+
$$ \tag{13 }
 +
\int\limits _ { 0 } ^  \infty  \| B ( t) \|  dt  < \infty .
 +
$$
  
If (13) is satisfied, the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350144.png" /> is asymptotically equivalent to the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350145.png" />.
+
If (13) is satisfied, the system $  \dot{x} = B ( t) x $
 +
is asymptotically equivalent to the system $  \dot{x} = 0 $.
  
Two systems of the form (11) with constant coefficients are said to be topologically equivalent if there is a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350146.png" /> that takes oriented trajectories of one system into oriented trajectories of the other. If two square matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350147.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350148.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350149.png" /> have the same number of eigen values with negative real part and have no eigen values with zero real part, then the systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350150.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350151.png" /> are topologically equivalent.
+
Two systems of the form (11) with constant coefficients are said to be topologically equivalent if there is a homeomorphism $  h : \mathbf R  ^ {n} \rightarrow \mathbf R  ^ {n} $
 +
that takes oriented trajectories of one system into oriented trajectories of the other. If two square matrices $  A $
 +
and $  B $
 +
of order $  n $
 +
have the same number of eigen values with negative real part and have no eigen values with zero real part, then the systems $  \dot{x} = A x $
 +
and $  \dot{x} = B x $
 +
are topologically equivalent.
  
7) Suppose that in the system (6) the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350152.png" /> is continuous and bounded on the whole real axis. The system (6) is said to have exponential dichotomy if the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350153.png" /> splits into a direct sum: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350154.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350155.png" />, so that for every solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350156.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png" /> the inequality
+
7) Suppose that in the system (6) the matrix $  A ( t) $
 +
is continuous and bounded on the whole real axis. The system (6) is said to have exponential dichotomy if the space $  \mathbf R  ^ {n} $
 +
splits into a direct sum: $  \mathbf R  ^ {n} = \mathbf R ^ {n _ {1} } \oplus \mathbf R ^ {n _ {2} } $,  
 +
$  n _ {1} + n _ {2} = n $,  
 +
so that for every solution $  x ( t) $
 +
with $  x ( 0) \in \mathbf R ^ {n _ {1} } $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350158.png" /></td> </tr></table>
+
$$
 +
\| x ( t) \|  \geq  c e ^ {k ( t - t _ {0} ) }
 +
$$
  
holds, and for every solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350159.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350160.png" /> the inequality
+
holds, and for every solution $  x ( t) $
 +
with $  x ( 0) \in \mathbf R ^ {n _ {2} } $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350161.png" /></td> </tr></table>
+
$$
 +
\| x ( t) \|  \leq  c  ^ {-} 1 e ^ {- k ( t - t _ {0} ) }
 +
$$
  
holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350162.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350163.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350164.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350165.png" /> are constants. For example, exponential dichotomy is present in a system (11) with constant matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350166.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350167.png" /> has no eigen values with zero real part (such a system is said to be hyperbolic). If the vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350168.png" /> is bounded on the whole real axis, then a system (5) having exponential dichotomy has a unique solution that is bounded on the whole line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350169.png" />.
+
holds for all $  t _ {0} \in \mathbf R $
 +
and $  t \geq  t _ {0} $,  
 +
where $  0 < c \leq  1 $
 +
and  $  k > 0 $
 +
are constants. For example, exponential dichotomy is present in a system (11) with constant matrix $  A $
 +
if $  A $
 +
has no eigen values with zero real part (such a system is said to be hyperbolic). If the vector function $  b ( t) $
 +
is bounded on the whole real axis, then a system (5) having exponential dichotomy has a unique solution that is bounded on the whole line $  \mathbf R $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.G. Petrovskii,  "Ordinary differential equations" , Prentice-Hall  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Arnol'd,  "Ordinary differential equations" , M.I.T.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.M. [A.M. Lyapunov] Liapounoff,  "Problème général de la stabilité du mouvement" , Princeton Univ. Press  (1947)  (Translated from Russian)  (Reprint, Kraus, 1950)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.P. Demidovich,  "Lectures on the mathematical theory of stability" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.F. Bylov,  R.E. Vinograd,  D.M. Grobman,  V.V. Nemytskii,  "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.G. Petrovskii,  "Ordinary differential equations" , Prentice-Hall  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Arnol'd,  "Ordinary differential equations" , M.I.T.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.M. [A.M. Lyapunov] Liapounoff,  "Problème général de la stabilité du mouvement" , Princeton Univ. Press  (1947)  (Translated from Russian)  (Reprint, Kraus, 1950)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.P. Demidovich,  "Lectures on the mathematical theory of stability" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.F. Bylov,  R.E. Vinograd,  D.M. Grobman,  V.V. Nemytskii,  "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
If in (6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350170.png" /> is periodic with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350171.png" />, the fundamental matrix is of the form
+
If in (6) $  A ( t) $
 +
is periodic with period $  T $,  
 +
the fundamental matrix is of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350172.png" /></td> </tr></table>
+
$$
 +
X ( t)  = Y ( t) e  ^ {Rt}
 +
$$
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350173.png" /> a matrix with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350174.png" />-periodic coefficients and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350175.png" /> a constant matrix, see [[Floquet theory|Floquet theory]] for more details.
+
with $  Y ( t) $
 +
a matrix with $  T $-
 +
periodic coefficients and $  R $
 +
a constant matrix, see [[Floquet theory|Floquet theory]] for more details.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Bellman,  "Stability theory of differential equations" , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Bellman,  "Stability theory of differential equations" , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR></table>

Revision as of 22:17, 5 June 2020


An ordinary differential equation (cf. Differential equation, ordinary) that is linear in the unknown function of one independent variable and its derivatives, that is, an equation of the form

$$ \tag{1 } x ^ {(} n) + a _ {1} ( t) x ^ {(} n- 1) + \dots + a _ {n} ( t) x = f ( t) , $$

where $ x ( t) $ is the unknown function and $ a _ {i} ( t) $, $ f ( t) $ are given functions; the number $ n $ is called the order of equation (1) (below the general theory of linear ordinary differential equations is presented; for equations of the second order see also Linear ordinary differential equation of the second order).

1) If in (1) the functions $ a _ {1} \dots a _ {n} , f $ are continuous on the interval $ ( a , b ) $, then for any numbers $ x _ {0} , x _ {0} ^ \prime \dots x _ {0} ^ {(} n- 1) $ and $ t _ {0} \in ( a , b ) $ there is a unique solution $ x ( t) $ of (1) defined on the whole interval $ ( a , b ) $ and satisfying the initial conditions

$$ x ( t _ {0} ) = x _ {0} ,\ x ^ \prime ( t _ {0} ) = x _ {0} ^ \prime \dots x ^ {(} n- 1) ( t _ {0} ) = x _ {0} ^ {(} n- 1) . $$

The equation

$$ \tag{2 } x ^ {(} n) + a _ {1} ( t) x ^ {(} n- 1) + \dots + a _ {n} ( t) x = 0 $$

is called the homogeneous equation corresponding to the inhomogeneous equation (1). If $ x ( t) $ is a solution of (2) and

$$ x ( t _ {0} ) = x ^ \prime ( t _ {0} ) = \dots = \ x ^ {(} n- 1) ( t _ {0} ) = 0 , $$

then $ x ( t) \equiv 0 $. If $ x _ {1} ( t) \dots x _ {m} ( t) $ are solutions of (2), then any linear combination

$$ C _ {1} x _ {1} ( t) + \dots + C _ {m} x _ {m} ( t) $$

is a solution of (2). If the $ n $ functions

$$ \tag{3 } x _ {1} ( t) \dots x _ {n} ( t) $$

are linearly independent solutions of (2), then for every solution $ x ( t) $ of (2) there are constants $ C _ {1} \dots C _ {n} $ such that

$$ \tag{4 } x ( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) . $$

Thus, if (3) is a fundamental system of solutions of (2) (i.e. a system of $ n $ linearly independent solutions of (2)), then its general solution is given by (4), where $ C _ {1} \dots C _ {n} $ are arbitrary constants. For every non-singular $ n \times n $ matrix $ B = \| b _ {ij} \| $ and every $ t _ {0} \in ( a , b ) $ there is a fundamental system of solutions (3) of equation (2) such that

$$ x _ {i} ^ {(} n- j) ( t _ {0} ) = b _ {ij} ,\ \ i , j = 1 \dots n . $$

For the functions (3) the determinant

$$ W ( t) = \mathop{\rm det} \ \left \| \begin{array}{ccc} x _ {1} ( t) &\dots &x _ {n} ( t) \\ x _ {1} ^ \prime &\dots &x _ {n} ^ \prime ( t) \\ \dots &\dots &\dots \\ x _ {1} ^ {(} n- 1) ( t) &\dots &x _ {n} ^ {(} n- 1) ( t) \\ \end{array} \ \right \| $$

is called the Wronski determinant, or Wronskian. If (3) is a fundamental system of solutions of (2), then $ W ( t) \neq 0 $ for all $ t \in ( a , b ) $. If $ W ( t _ {0} ) = 0 $ for at least one point $ t _ {0} $, then $ W ( t) \equiv 0 $ and the solutions (3) of equation (2) are linearly dependent in this case. For the Wronskian of the solutions (3) of equation (2) the Liouville–Ostrogradski formula holds:

$$ W ( t) = W ( t _ {0} ) \ \mathop{\rm exp} \left ( - \int\limits _ {t _ {0} } ^ { t } a _ {1} ( \tau ) d \tau \right ) . $$

The general solution of (1) is the sum of the general solution of the homogeneous equation (2) and a particular solution $ x _ {0} ( t) $ of the inhomogeneous equation (1), and is given by the formula

$$ x ( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) + x _ {0} ( t) , $$

where $ x _ {1} ( t) \dots x _ {n} ( t) $ is a fundamental system of solutions of (2) and $ C _ {1} \dots C _ {n} $ are arbitrary constants. If a fundamental system of solutions (3) of equation (2) is known, then a particular solution of the inhomogeneous equation (1) can be found by the method of variation of constants.

2) A system of linear ordinary differential equations of order $ n $ is a system

$$ \dot{x} _ {i} = \sum _ { j= } 1 ^ { n } a _ {ij} ( t) x _ {i} + b _ {i} ( t),\ \ i = 1 \dots n , $$

or, in vector form,

$$ \tag{5 } \dot{x} = A ( t) x + b ( t) , $$

where $ x ( t) \in \mathbf R ^ {n} $ is an unknown column vector, $ A ( t) $ is a square matrix of order $ n $ and $ b ( t) $ is a given vector function. Suppose also that $ A ( t) $ and $ b ( t) $ are continuous on some interval $ ( a , b ) $. In this case, for any $ t _ {0} \in ( a , b ) $ and $ x _ {0} \in \mathbf R ^ {n} $ there is a unique solution $ x ( t) $ of the system (5) defined on the whole interval $ ( a , b ) $ and satisfying the initial condition $ x ( t _ {0} ) = x _ {0} $.

The linear system

$$ \tag{6 } \dot{x} = A ( t) x $$

is called the homogeneous system corresponding to the inhomogeneous system (5). If $ x ( t) $ is a solution of (6) and $ x ( t _ {0} ) = 0 $, then $ x ( t) \equiv 0 $; if $ x _ {1} ( t) \dots x _ {m} ( t) $ are solutions, then any linear combination

$$ C _ {1} x _ {1} ( t) + \dots + C _ {m} x _ {m} ( t) $$

is a solution of (6); if $ x _ {1} ( t) \dots x _ {m} ( t) $ are linearly independent solutions of (6), then the vectors $ x _ {1} ( t) \dots x _ {m} ( t) $ are linearly independent for any $ t \in ( a , b ) $. If the $ n $ vector functions

$$ \tag{7 } x _ {1} ( t) \dots x _ {n} ( t) $$

form a fundamental system of solutions of (6), then for every solution $ x ( t) $ of (6) there are constants $ C _ {1} \dots C _ {n} $ such that

$$ \tag{8 } x( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t). $$

Thus, formula (8) gives the general solution of (6). For any $ t _ {0} \in ( a , b ) $ and any linearly independent vectors $ a _ {1} \dots a _ {n} \in \mathbf R ^ {n} $ there is a fundamental system of solutions (7) of the system (6) such that

$$ x _ {1} ( t _ {0} ) = a _ {1} \dots x _ {n} ( t _ {0} ) = a _ {n} . $$

For vector functions (7) that are solutions of (6), the determinant $ W ( t) $ of the matrix

$$ \tag{9 } X ( t) = \ \left \| \begin{array}{ccc} x _ {11} ( t) &\dots &x _ {n1} ( t) \\ \dots &\dots &\dots \\ x _ {1n} ( t) &\dots &x _ {nn} ( t) \\ \end{array} \ \right \| , $$

where $ x _ {ij} ( t) $ is the $ j $- th component of the $ i $- th solution, is called the Wronski determinant, or Wronskian. If (7) is a fundamental system of solutions of (6), then $ W ( t) \neq 0 $ for all $ t \in ( a , b ) $ and (9) is called a fundamental matrix. If the solutions (7) of the system (6) are linearly dependent for at least one point $ t _ {0} $, then they are linearly dependent for any $ t \in ( a , b ) $, and in this case $ W ( t) \equiv 0 $. For the Wronskian of the solutions (7) of the system (6) Liouville's formula holds:

$$ W = W ( t _ {0} ) \mathop{\rm exp} \left ( \int\limits _ { t _ 0 } ^ { t } \mathop{\rm Tr} ( A ( \tau ) ) d \tau \right ) , $$

where $ \mathop{\rm Tr} ( A ( \tau ) ) = a _ {11} ( \tau ) + \dots + a _ {nn} ( \tau ) $ is the trace of the matrix $ A ( \tau ) $. The matrix (9) satisfies the matrix equation $ \dot{X} = A ( t) X ( t) $. If $ X ( t) $ is a fundamental matrix of the system (6), then for every other fundamental matrix $ Y ( t) $ of this system there is a constant non-singular $ n \times n $ matrix $ C $ such that $ Y ( t) = X ( t) C $. If $ X ( t _ {0} ) = E $, where $ E $ is the unit matrix, then the fundamental matrix $ X ( t) $ is said to be normalized at the point $ t _ {0} $ and the formula $ x ( t) = X ( t) x _ {0} $ gives the solution of (6) satisfying the initial condition $ x ( t _ {0} ) = x _ {0} $.

If the matrix $ A ( t) $ commutes with its integral, then the fundamental matrix of (6) normalized at the point $ t _ {0} \in ( a , b ) $ is given by the formula

$$ X ( t) = \mathop{\rm exp} \left ( \int\limits _ {t _ {0} } ^ { t } A ( \tau ) d \tau \right ) . $$

In particular, for a constant matrix $ A $ the fundamental matrix normalized at the point $ t _ {0} $ is given by the formula $ X ( t) = \mathop{\rm exp} A ( t - t _ {0} ) $. The general solution of (5) is the sum of the general solution of the homogeneous system (6) and a particular solution $ x _ {0} ( t) $ of (5) and is given by the formula

$$ x ( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) + x _ {0} ( t) , $$

where $ x _ {1} ( t) \dots x _ {n} ( t) $ is a fundamental system of solutions of (6) and $ C _ {1} \dots C _ {n} $ are arbitrary constants. If a fundamental system of solutions (7) of the system (6) is known, then a particular solution of the inhomogeneous system (5) can be found by the method of variation of constants. If $ X ( t) $ is a fundamental matrix of the system (6), then the formula

$$ x ( t) = X ( t) X ^ {-} 1 ( t _ {0} ) x _ {0} + \int\limits _ {t _ {0} } ^ { t } X ( t) X ^ {-} 1 ( \tau ) b ( \tau ) d \tau $$

gives the solution of (5) satisfying the initial condition $ x ( t _ {0} ) = x _ {0} $.

3) Suppose that in the system (5) and (6) $ A ( t) $ and $ b ( t) $ are continuous on a half-line $ [ a , + \infty ) $. All solutions of (5) are simultaneously either stable or unstable, so the system (5) is said to be stable (uniformly stable, asymptotically stable) if all its solutions are stable (respectively, uniformly stable, asymptotically stable, cf. Asymptotically-stable solution; Lyapunov stability). The system (5) is stable (uniformly stable, asymptotically stable) if and only if the system (6) is stable (respectively, uniformly stable, asymptotically stable). Therefore, in the investigation of questions on the stability of linear differential systems it suffices to consider only homogeneous systems.

The system (6) is stable if and only if all its solutions are bounded on the half-line $ [ a , + \infty ) $. The system (6) is asymptotically stable if and only if

$$ \tag{10 } \lim\limits _ {t \rightarrow + \infty } \ x ( t) = 0 $$

for all its solutions $ x ( t) $. The latter condition is equivalent to (10) being satisfied for $ n $ solutions $ x _ {1} ( t) \dots x _ {n} ( t) $ of the system that form a fundamental system of solutions. An asymptotically-stable system (6) is asymptotically stable in the large.

A linear system with constant coefficients

$$ \tag{11 } \dot{x} = A x $$

is stable if and only if all eigen values $ \lambda _ {1} \dots \lambda _ {n} $ of $ A $ have non-positive real parts (that is, $ \mathop{\rm Re} \lambda _ {i} \leq 0 $, $ i = 1 \dots n $), and the eigen values with zero real part may have only simple elementary divisors. The system (11) is asymptotically stable if and only if all eigen values of $ A $ have negative real parts.

4) The system

$$ \tag{12 } \dot{y} = - A ^ {T} ( t) y , $$

where $ A ^ {T} ( t) $ is the transposed matrix of $ A ( t) $, is called the adjoint system of the system (6). If $ x ( t) $ and $ y ( t) $ are arbitrary solutions of (6) and (12), respectively, then the scalar product

$$ ( x ( t) , y ( t) ) \equiv \textrm{ const } . $$

If $ X ( t) $ and $ Y ( t) $ are fundamental matrices of solutions of (6) and (12), respectively, then

$$ Y ^ {T} ( t) X ( t) = C , $$

where $ C $ is a non-singular constant matrix.

5) The investigation of various special properties of linear systems, particularly the question of stability, is connected with the concept of the Lyapunov characteristic exponent of a solution and the first method in the theory of stability developed by A.M. Lyapunov (see Regular linear system; Reducible linear system; Lyapunov stability).

6) Two systems of the form (6) are said to be asymptotically equivalent if there is a one-to-one correspondence between their solutions $ x _ {1} ( t) $ and $ x _ {2} ( t) $ such that

$$ \lim\limits _ {t \rightarrow \infty } \ ( x _ {1} ( t) - x _ {2} ( t) ) = 0 . $$

If the system (11) with a constant matrix $ A $ is stable, then it is asymptotically equivalent to the system $ \dot{x} = ( A + B ( t)) x $, where the matrix $ B ( t) $ is continuous on $ [ a , + \infty ) $ and

$$ \tag{13 } \int\limits _ { 0 } ^ \infty \| B ( t) \| dt < \infty . $$

If (13) is satisfied, the system $ \dot{x} = B ( t) x $ is asymptotically equivalent to the system $ \dot{x} = 0 $.

Two systems of the form (11) with constant coefficients are said to be topologically equivalent if there is a homeomorphism $ h : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ that takes oriented trajectories of one system into oriented trajectories of the other. If two square matrices $ A $ and $ B $ of order $ n $ have the same number of eigen values with negative real part and have no eigen values with zero real part, then the systems $ \dot{x} = A x $ and $ \dot{x} = B x $ are topologically equivalent.

7) Suppose that in the system (6) the matrix $ A ( t) $ is continuous and bounded on the whole real axis. The system (6) is said to have exponential dichotomy if the space $ \mathbf R ^ {n} $ splits into a direct sum: $ \mathbf R ^ {n} = \mathbf R ^ {n _ {1} } \oplus \mathbf R ^ {n _ {2} } $, $ n _ {1} + n _ {2} = n $, so that for every solution $ x ( t) $ with $ x ( 0) \in \mathbf R ^ {n _ {1} } $ the inequality

$$ \| x ( t) \| \geq c e ^ {k ( t - t _ {0} ) } $$

holds, and for every solution $ x ( t) $ with $ x ( 0) \in \mathbf R ^ {n _ {2} } $ the inequality

$$ \| x ( t) \| \leq c ^ {-} 1 e ^ {- k ( t - t _ {0} ) } $$

holds for all $ t _ {0} \in \mathbf R $ and $ t \geq t _ {0} $, where $ 0 < c \leq 1 $ and $ k > 0 $ are constants. For example, exponential dichotomy is present in a system (11) with constant matrix $ A $ if $ A $ has no eigen values with zero real part (such a system is said to be hyperbolic). If the vector function $ b ( t) $ is bounded on the whole real axis, then a system (5) having exponential dichotomy has a unique solution that is bounded on the whole line $ \mathbf R $.

References

[1] I.G. Petrovskii, "Ordinary differential equations" , Prentice-Hall (1966) (Translated from Russian)
[2] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)
[3] V.I. Arnol'd, "Ordinary differential equations" , M.I.T. (1973) (Translated from Russian)
[4] A.M. [A.M. Lyapunov] Liapounoff, "Problème général de la stabilité du mouvement" , Princeton Univ. Press (1947) (Translated from Russian) (Reprint, Kraus, 1950)
[5] B.P. Demidovich, "Lectures on the mathematical theory of stability" , Moscow (1967) (In Russian)
[6] B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)
[7] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)

Comments

If in (6) $ A ( t) $ is periodic with period $ T $, the fundamental matrix is of the form

$$ X ( t) = Y ( t) e ^ {Rt} $$

with $ Y ( t) $ a matrix with $ T $- periodic coefficients and $ R $ a constant matrix, see Floquet theory for more details.

References

[a1] R.E. Bellman, "Stability theory of differential equations" , McGraw-Hill (1953)
[a2] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17
How to Cite This Entry:
Linear ordinary differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_ordinary_differential_equation&oldid=13677
This article was adapted from an original article by N.N. Ladis (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article