Namespaces
Variants
Actions

Difference between revisions of "Non-Fredholm integral equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
n0670401.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/N067/N.0607040 Non\AAhFredholm integral equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An [[Integral equation|integral equation]] for which some of the [[Fredholm theorems|Fredholm theorems]] are false. Sometimes such an integral equation is said to be a singular integral equation.
 
An [[Integral equation|integral equation]] for which some of the [[Fredholm theorems|Fredholm theorems]] are false. Sometimes such an integral equation is said to be a singular integral equation.
  
 
For example, the Fourier integral equation
 
For example, the Fourier integral equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi ( x) - \sqrt {
 +
\frac{2} \pi
 +
}
 +
\int\limits _ { 0 } ^  \infty 
 +
\sin ( x s ) \phi ( s) d s  =  0
 +
$$
  
 
has the solution
 
has the solution
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670402.png" /></td> </tr></table>
+
$$
 +
\phi _ {a} ( x)  = \
 +
\sqrt {
 +
\frac \pi {2}
 +
}
 +
e  ^ {-} ax +
 +
 
 +
\frac{x}{a  ^ {2} + x  ^ {2} }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670403.png" /> is an arbitrary positive constant; an infinite set of linearly independent solutions corresponds to the eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670404.png" /> of (1), that is, for equation (1) Fredholm's theorem that a homogeneous equation has finitely many linearly independent solutions, does not hold.
+
where $  a $
 +
is an arbitrary positive constant; an infinite set of linearly independent solutions corresponds to the eigen value $  \sqrt {2 / \pi } $
 +
of (1), that is, for equation (1) Fredholm's theorem that a homogeneous equation has finitely many linearly independent solutions, does not hold.
  
 
In the case of the Lalesco–Picard integral equation
 
In the case of the Lalesco–Picard integral equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670405.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\phi ( x) - \lambda
 +
\int\limits _ {- \infty } ^  \infty 
 +
e ^ {- | x - s | } \phi ( s) d s  =  0 ,
 +
$$
  
every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670406.png" /> is an eigen value, namely, to every positive number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670407.png" /> correspond the two independent solutions
+
every $  \lambda \in ( 0 , + \infty ) $
 +
is an eigen value, namely, to every positive number $  \lambda $
 +
correspond the two independent solutions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067040/n0670408.png" /></td> </tr></table>
+
$$
 +
\phi _  \lambda  ^ {(} 1) ( x)  = e ^ {\sqrt {1 - 2 \lambda } x } ,\ \
 +
\phi _  \lambda  ^ {(} 2) ( x)  = e ^ {- \sqrt {1 - 2 \lambda } x } .
 +
$$
  
 
Consequently, for equation (2) Fredholm's theorem, that the set of eigen values of an equation is at most countable, does not hold.
 
Consequently, for equation (2) Fredholm's theorem, that the set of eigen values of an equation is at most countable, does not hold.
Line 27: Line 65:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. Privalov,  "Integral equations" , Moscow-Leningrad  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.G. Petrovskii,  "Lectures on the theory of integral equations" , Graylock  (1957)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. Privalov,  "Integral equations" , Moscow-Leningrad  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.G. Petrovskii,  "Lectures on the theory of integral equations" , Graylock  (1957)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>

Revision as of 08:02, 6 June 2020


An integral equation for which some of the Fredholm theorems are false. Sometimes such an integral equation is said to be a singular integral equation.

For example, the Fourier integral equation

$$ \tag{1 } \phi ( x) - \sqrt { \frac{2} \pi } \int\limits _ { 0 } ^ \infty \sin ( x s ) \phi ( s) d s = 0 $$

has the solution

$$ \phi _ {a} ( x) = \ \sqrt { \frac \pi {2} } e ^ {-} ax + \frac{x}{a ^ {2} + x ^ {2} } , $$

where $ a $ is an arbitrary positive constant; an infinite set of linearly independent solutions corresponds to the eigen value $ \sqrt {2 / \pi } $ of (1), that is, for equation (1) Fredholm's theorem that a homogeneous equation has finitely many linearly independent solutions, does not hold.

In the case of the Lalesco–Picard integral equation

$$ \tag{2 } \phi ( x) - \lambda \int\limits _ {- \infty } ^ \infty e ^ {- | x - s | } \phi ( s) d s = 0 , $$

every $ \lambda \in ( 0 , + \infty ) $ is an eigen value, namely, to every positive number $ \lambda $ correspond the two independent solutions

$$ \phi _ \lambda ^ {(} 1) ( x) = e ^ {\sqrt {1 - 2 \lambda } x } ,\ \ \phi _ \lambda ^ {(} 2) ( x) = e ^ {- \sqrt {1 - 2 \lambda } x } . $$

Consequently, for equation (2) Fredholm's theorem, that the set of eigen values of an equation is at most countable, does not hold.

The theory has been worked out in detail for two classes of non-Fredholm integral equations: equations in which the unknown function stands under the sign of an improper integral in the sense of the principal value (singular integral equations, cf. Singular integral equation); and equations in which the unknown function stands under the sign of an integral convolution transformation (cf. Integral equation of convolution type). For such equations, generally speaking, the Fredholm alternative is violated, as well as the fact that the numbers of linearly independent solutions of the homogeneous equation and its adjoint are equal.

See also the references to Integral equation of convolution type and Singular integral equation.

References

[1] I.I. Privalov, "Integral equations" , Moscow-Leningrad (1937) (In Russian)
[2] I.G. Petrovskii, "Lectures on the theory of integral equations" , Graylock (1957) (Translated from Russian)

Comments

References

[a1] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Non-Fredholm integral equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-Fredholm_integral_equation&oldid=13328
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article