Namespaces
Variants
Actions

Difference between revisions of "Category cohomology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 95 formulas out of 96 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200701.png" /> be a [[Small category|small category]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200702.png" /> an [[Abelian category|Abelian category]] with exact infinite products, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200703.png" /> a covariant [[Functor|functor]]. Define the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200704.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200705.png" /> in the following way:
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200706.png" /></td> </tr></table>
+
Out of 96 formulas, 95 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200707.png" /></td> </tr></table>
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
Let $\mathcal{C}$ be a [[Small category|small category]], $\mathcal{A}$ an [[Abelian category|Abelian category]] with exact infinite products, and $M : \mathcal{C} \rightarrow \mathcal{A}$ a covariant [[Functor|functor]]. Define the objects $C ^ { n } ( \mathcal{C} , M )$ for $n \geq 0$ in the following way:
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200708.png" /> is a sequence of morphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200709.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png" />. Let
+
\begin{equation*} C ^ { 0 } ( \mathcal{C} , M ) = \prod _ { C \in  \text{OC} } M ( C ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007012.png" /></td> </tr></table>
+
\begin{equation*} C ^ { n } ( {\cal C} , M ) = \prod _ { \langle \alpha _ { 1 } , \dots , \alpha _ { n } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n &gt; 0, \end{equation*}
 +
 
 +
where $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ is a sequence of morphisms of $\mathcal{C}$ with $\operatorname { codom} \alpha _ { i } = \operatorname { dom } \alpha _ { i + 1 }$, $1 \leq i \leq n - 1$. Let
 +
 
 +
\begin{equation*} d ^ { n } : C ^ { n } ( \mathcal{C} , M ) \rightarrow C ^ { n + 1 } ( \mathcal{C} , M ) \end{equation*}
  
 
be the [[Monomorphism|monomorphism]] induced by the family of morphisms
 
be the [[Monomorphism|monomorphism]] induced by the family of morphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007013.png" /></td> </tr></table>
+
\begin{equation*} \{ M ( \alpha ) \text { pr} _ { \text {dom } \alpha } - \text { pr}_{ \text {codom } \alpha } \}_{ \alpha} \quad \text { for } n = 0, \end{equation*}
  
 
and by the family
 
and by the family
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007014.png" /></td> </tr></table>
+
\begin{equation*} \{ M ( \alpha _ { n +1}  ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+ \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007015.png" /></td> </tr></table>
+
\begin{equation*} +\sum _ { i &lt; n + 1 } ( - 1 ) ^ { n + 1 - i } \operatorname { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { i + 1 } \alpha _ { i } , \ldots , \alpha _ { n + 1 } ) }+ \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007016.png" /></td> </tr></table>
+
\begin{equation*} \left. + ( - 1 ) ^ { n + 1 } \operatorname { pr }_{ ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) }\right\}_{ ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )} \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007017.png" /></td> </tr></table>
+
\begin{equation*} \text{for} \, n &gt; 0. \end{equation*}
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007018.png" /> denotes the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png" />).
+
Here, $\operatorname { pr } _{( \alpha _ { 1 } , \dots , \alpha _ { n } )}$ denotes the projection $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$).
  
The morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007021.png" /> satisfy the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007022.png" />, and therefore one obtains a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007023.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007024.png" />. The homology objects of this complex are called the cohomology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007025.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007026.png" /> and are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007027.png" />. For any functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007028.png" /> there are a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007029.png" /> (called the co-induced functor) and a monomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007031.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007032.png" />.
+
The morphisms $d ^ { n }$, $n \geq 0$ satisfy the conditions $d ^ { n + 1 } d ^ { n } = 0$, and therefore one obtains a complex $C ^ { * } (  \mathcal{C} , M )$ in $\mathcal{A}$. The homology objects of this complex are called the cohomology of $\mathcal{C}$ with coefficients in $M$ and are denoted by $H ^ { n } ( \mathcal{C} , M )$. For any functor $M : \mathcal{C} \rightarrow \mathcal{A}$ there are a functor $c M : \mathcal{C} \rightarrow A$ (called the co-induced functor) and a monomorphism $M \rightarrow c M$ such that $H ^ { n } ( \mathcal{C} , cM ) = 0$ for $n &gt; 0$.
  
The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007033.png" /> is an [[Exact functor|exact functor]]. Therefore, any short [[Exact sequence|exact sequence]] of functors induces a long exact sequence of cohomology objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007034.png" />. It can be proved that the functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007035.png" /> form a universal connected (exact) sequence of functors and that
+
The functor $C ^ { * } ( \mathcal{C} , - )$ is an [[Exact functor|exact functor]]. Therefore, any short [[Exact sequence|exact sequence]] of functors induces a long exact sequence of cohomology objects of $\mathcal{C}$. It can be proved that the functors $\{ H ^ { n } ( \mathcal{C} , - ) : n \geq 0 \}$ form a universal connected (exact) sequence of functors and that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007036.png" /></td> </tr></table>
+
\begin{equation*} H ^ { n } ( {\cal C} , M ) = \underline{\operatorname { lim }} \leftarrow ^ { n } M, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007038.png" />th right satellite of the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007039.png" /> (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007040.png" /> denotes the category of functors from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007041.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007042.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007043.png" /> is an (inverse) limit functor).
+
where $\underline{\operatorname { lim }} \leftarrow ^ { n }$ is $n$th right satellite of the functor $\operatorname { \underline{lim} }  \leftarrow : \mathcal{A} ^ { \mathbf{C} } \rightarrow A$ (here, $\mathcal{A } ^ { \text{C} }$ denotes the category of functors from $\mathcal{C}$ to $\mathcal{A}$, and $\underline{\operatorname{lim}} \leftarrow$ is an (inverse) limit functor).
  
For a small category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007044.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007045.png" /> denote the pre-additive category whose objects are those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007047.png" /> is the free [[Abelian group|Abelian group]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007048.png" /> (cf. also [[Free group|Free group]]). Composition is defined in the unique way so as to be bilinear and to make the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007049.png" /> a functor. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007050.png" /> is a [[Monoid|monoid]], then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007051.png" /> is the monoid ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007052.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007053.png" />. The inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007054.png" /> induces an isomorphism of categories
+
For a small category $\mathcal{C}$, let $Z \mathcal C $ denote the pre-additive category whose objects are those of $\mathcal{C}$ and $Z \mathcal{C} ( C , C^{\prime} )$ is the free [[Abelian group|Abelian group]] on $\mathcal{C} ( C , C ^ { \prime } )$ (cf. also [[Free group|Free group]]). Composition is defined in the unique way so as to be bilinear and to make the inclusion ${\cal C} \rightarrow {\bf Z} {\cal C}$ a functor. If $\mathcal{C}$ is a [[Monoid|monoid]], then $Z \mathcal C $ is the monoid ring of $\mathcal{C}$ with coefficients in $Z$. The inclusion ${\cal C} \rightarrow {\bf Z} {\cal C}$ induces an isomorphism of categories
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png" /></td> </tr></table>
+
\begin{equation*} \text{Ab} ^ { \text{ZC} } \approx \text{Ab} ^ { \text{C} } \end{equation*}
  
where the left-side is the category of additive functors from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007056.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007057.png" /> (the category of Abelian groups) and the right-hand side side is the category of all functors from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007058.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007059.png" />.
+
where the left-side is the category of additive functors from $Z \mathcal C $ to $\operatorname{Ab}$ (the category of Abelian groups) and the right-hand side side is the category of all functors from $\mathcal{C}$ to $\operatorname{Ab}$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007060.png" /> is the category of Abelian groups (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007061.png" />), one has
+
If $\mathcal{A}$ is the category of Abelian groups (${\cal A} = \operatorname{Ab}$), one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007062.png" /></td> </tr></table>
+
\begin{equation*} H ^ { n } ( {\cal C} , M ) = \operatorname { Ext } _ { Z {\bf C} } ^ { n } ( {\cal Z} , M ), \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007063.png" /> denotes the constant functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007064.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007066.png" /> for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007067.png" /> and any morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007068.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007069.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007070.png" /> is taken in the category of additive functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007071.png" />.
+
where $\mathcal Z$ denotes the constant functor $Z \mathcal{C} \rightarrow \operatorname{Ab}$ (i.e. $Z ( C ) = \mathcal{Z}$, $Z ( \alpha ) = 1 _ { \mathbf{Z} }$ for any object $C$ and any morphism $\alpha$ of $\mathcal{C}$), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007070.png"/> is taken in the category of additive functors $\text{Ab} ^ { \text{ZC} }$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007072.png" /> is a [[Group|group]] (i.e. a category with one object and whose morphisms are invertible) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007073.png" />, then the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007074.png" /> are the cohomology groups (cf. also [[Cohomology group|Cohomology group]]) of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007075.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007076.png" />, which is a [[Module|module]] over the group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007077.png" /> (cf. also [[Cross product|Cross product]]). In this case the co-induced functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007078.png" /> is a co-induced <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007079.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007080.png" />.
+
If $\mathcal{C}$ is a [[Group|group]] (i.e. a category with one object and whose morphisms are invertible) and ${\cal A} = \operatorname{Ab}$, then the groups $H ^ { n } ( \mathcal{C} , M )$ are the cohomology groups (cf. also [[Cohomology group|Cohomology group]]) of the group $\mathcal{C}$ with coefficients in $M$, which is a [[Module|module]] over the group ring $Z \mathcal C $ (cf. also [[Cross product|Cross product]]). In this case the co-induced functor $c M$ is a co-induced $Z \mathcal C $-module $\operatorname{Ab} ( Z ({\cal C} ) , M )$.
  
As for the case of groups, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007081.png" />-fold extensions of categories can be defined and the isomorphism with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007082.png" /> cohomologies of categories can be established. Under additional assumptions, the properties of group cohomologies are obtained for category cohomologies (e.g. the universal coefficient formula for the cohomology group of a category, etc.).
+
As for the case of groups, $n$-fold extensions of categories can be defined and the isomorphism with $n + 1$ cohomologies of categories can be established. Under additional assumptions, the properties of group cohomologies are obtained for category cohomologies (e.g. the universal coefficient formula for the cohomology group of a category, etc.).
  
For a [[Commutative ring|commutative ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007083.png" />, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007085.png" />-category is a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007086.png" /> equipped with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007087.png" />-module structure on each hom-set in such a way that composition induces a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007088.png" />-module homomorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007089.png" />, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007090.png" />-category is just a pre-additive category. B. Mitchell has defined the (Hochshild) cohomology group of a small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007091.png" />-category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007092.png" /> with coefficients in a bimodule (i.e., bifunctor) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007093.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007094.png" /> denotes the [[Tensor product|tensor product]] of categories). H.-J. Baues and G. Wirshing have introduced cohomology of a small category with coefficients in a natural system, which generalizes known concepts and uses Abelian-group-valued functors (i.e. modules) and bifunctors as coefficients.
+
For a [[Commutative ring|commutative ring]] $K$, a $K$-category is a category $\mathcal{C}$ equipped with a $K$-module structure on each hom-set in such a way that composition induces a $K$-module homomorphism. If $K = \mathcal{Z}$, a $\mathcal Z$-category is just a pre-additive category. B. Mitchell has defined the (Hochshild) cohomology group of a small $K$-category $\mathcal{C}$ with coefficients in a bimodule (i.e., bifunctor) $F : {\cal C} ^ { * } \otimes _ { k } {\cal C} \rightarrow \operatorname{Ab}$ (where $\mathcal{C} ^ { * } \otimes_{ k} \mathcal{C}$ denotes the [[Tensor product|tensor product]] of categories). H.-J. Baues and G. Wirshing have introduced cohomology of a small category with coefficients in a natural system, which generalizes known concepts and uses Abelian-group-valued functors (i.e. modules) and bifunctors as coefficients.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.-J. Baues,  G. Wirshing,  "Cohomology of small categories"  ''J. Pure Appl. Algebra'' , '''38'''  (1985)  pp. 187–211</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Datuashvili,  "The cohomology of categories"  ''Tr. Tbiliss. Mat. Inst. A. Razmadze, Akad. Nauk Gruzin.SSR'' , '''62'''  (1979)  pp. 28–37</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Hoff,  "On the cohomology of categories"  ''Rend. Math. (VI)'' , '''7''' :  2  (1974)  pp. 169–192</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.J. Lee,  "A generalized Mayer–Vietoris sequence"  ''Math. Jap.'' , '''19''' :  1  (1974)  pp. 41–50</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Mitchell,  "Rings with several objects"  ''Adv. Math.'' , '''8'''  (1972)  pp. 1–161</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D.G. Quillen,  "Higher algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007095.png" />-theories"  H. Bass (ed.) , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007096.png" />-theory I'' , ''Lecture Notes Math.'' , '''341''' , Springer  (1973)  pp. 85–147</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  J.-E. Roos,  "Sur les foncteurs derives de <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007097.png" />. Applications"  ''C.R. Acad. Sci. Paris'' , '''252'''  (1961)  pp. 3702–3704</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  Ch.E. Watts,  "A homology theory for small categories" , ''Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965)'' , Springer  (1966)  pp. 331–335</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  H.-J. Baues,  G. Wirshing,  "Cohomology of small categories"  ''J. Pure Appl. Algebra'' , '''38'''  (1985)  pp. 187–211</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  T. Datuashvili,  "The cohomology of categories"  ''Tr. Tbiliss. Mat. Inst. A. Razmadze, Akad. Nauk Gruzin.SSR'' , '''62'''  (1979)  pp. 28–37</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  G. Hoff,  "On the cohomology of categories"  ''Rend. Math. (VI)'' , '''7''' :  2  (1974)  pp. 169–192</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  M.J. Lee,  "A generalized Mayer–Vietoris sequence"  ''Math. Jap.'' , '''19''' :  1  (1974)  pp. 41–50</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B. Mitchell,  "Rings with several objects"  ''Adv. Math.'' , '''8'''  (1972)  pp. 1–161</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  D.G. Quillen,  "Higher algebraic $K$-theories"  H. Bass (ed.) , ''Algebraic $K$-theory I'' , ''Lecture Notes Math.'' , '''341''' , Springer  (1973)  pp. 85–147</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  J.-E. Roos,  "Sur les foncteurs derives de $\operatorname { lim }_\lambda$. Applications"  ''C.R. Acad. Sci. Paris'' , '''252'''  (1961)  pp. 3702–3704</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  Ch.E. Watts,  "A homology theory for small categories" , ''Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965)'' , Springer  (1966)  pp. 331–335</td></tr></table>

Revision as of 17:03, 1 July 2020

Let $\mathcal{C}$ be a small category, $\mathcal{A}$ an Abelian category with exact infinite products, and $M : \mathcal{C} \rightarrow \mathcal{A}$ a covariant functor. Define the objects $C ^ { n } ( \mathcal{C} , M )$ for $n \geq 0$ in the following way:

\begin{equation*} C ^ { 0 } ( \mathcal{C} , M ) = \prod _ { C \in \text{OC} } M ( C ), \end{equation*}

\begin{equation*} C ^ { n } ( {\cal C} , M ) = \prod _ { \langle \alpha _ { 1 } , \dots , \alpha _ { n } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0, \end{equation*}

where $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ is a sequence of morphisms of $\mathcal{C}$ with $\operatorname { codom} \alpha _ { i } = \operatorname { dom } \alpha _ { i + 1 }$, $1 \leq i \leq n - 1$. Let

\begin{equation*} d ^ { n } : C ^ { n } ( \mathcal{C} , M ) \rightarrow C ^ { n + 1 } ( \mathcal{C} , M ) \end{equation*}

be the monomorphism induced by the family of morphisms

\begin{equation*} \{ M ( \alpha ) \text { pr} _ { \text {dom } \alpha } - \text { pr}_{ \text {codom } \alpha } \}_{ \alpha} \quad \text { for } n = 0, \end{equation*}

and by the family

\begin{equation*} \{ M ( \alpha _ { n +1} ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+ \end{equation*}

\begin{equation*} +\sum _ { i < n + 1 } ( - 1 ) ^ { n + 1 - i } \operatorname { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { i + 1 } \alpha _ { i } , \ldots , \alpha _ { n + 1 } ) }+ \end{equation*}

\begin{equation*} \left. + ( - 1 ) ^ { n + 1 } \operatorname { pr }_{ ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) }\right\}_{ ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )} \end{equation*}

\begin{equation*} \text{for} \, n > 0. \end{equation*}

Here, $\operatorname { pr } _{( \alpha _ { 1 } , \dots , \alpha _ { n } )}$ denotes the projection $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$).

The morphisms $d ^ { n }$, $n \geq 0$ satisfy the conditions $d ^ { n + 1 } d ^ { n } = 0$, and therefore one obtains a complex $C ^ { * } ( \mathcal{C} , M )$ in $\mathcal{A}$. The homology objects of this complex are called the cohomology of $\mathcal{C}$ with coefficients in $M$ and are denoted by $H ^ { n } ( \mathcal{C} , M )$. For any functor $M : \mathcal{C} \rightarrow \mathcal{A}$ there are a functor $c M : \mathcal{C} \rightarrow A$ (called the co-induced functor) and a monomorphism $M \rightarrow c M$ such that $H ^ { n } ( \mathcal{C} , cM ) = 0$ for $n > 0$.

The functor $C ^ { * } ( \mathcal{C} , - )$ is an exact functor. Therefore, any short exact sequence of functors induces a long exact sequence of cohomology objects of $\mathcal{C}$. It can be proved that the functors $\{ H ^ { n } ( \mathcal{C} , - ) : n \geq 0 \}$ form a universal connected (exact) sequence of functors and that

\begin{equation*} H ^ { n } ( {\cal C} , M ) = \underline{\operatorname { lim }} \leftarrow ^ { n } M, \end{equation*}

where $\underline{\operatorname { lim }} \leftarrow ^ { n }$ is $n$th right satellite of the functor $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { \mathbf{C} } \rightarrow A$ (here, $\mathcal{A } ^ { \text{C} }$ denotes the category of functors from $\mathcal{C}$ to $\mathcal{A}$, and $\underline{\operatorname{lim}} \leftarrow$ is an (inverse) limit functor).

For a small category $\mathcal{C}$, let $Z \mathcal C $ denote the pre-additive category whose objects are those of $\mathcal{C}$ and $Z \mathcal{C} ( C , C^{\prime} )$ is the free Abelian group on $\mathcal{C} ( C , C ^ { \prime } )$ (cf. also Free group). Composition is defined in the unique way so as to be bilinear and to make the inclusion ${\cal C} \rightarrow {\bf Z} {\cal C}$ a functor. If $\mathcal{C}$ is a monoid, then $Z \mathcal C $ is the monoid ring of $\mathcal{C}$ with coefficients in $Z$. The inclusion ${\cal C} \rightarrow {\bf Z} {\cal C}$ induces an isomorphism of categories

\begin{equation*} \text{Ab} ^ { \text{ZC} } \approx \text{Ab} ^ { \text{C} } \end{equation*}

where the left-side is the category of additive functors from $Z \mathcal C $ to $\operatorname{Ab}$ (the category of Abelian groups) and the right-hand side side is the category of all functors from $\mathcal{C}$ to $\operatorname{Ab}$.

If $\mathcal{A}$ is the category of Abelian groups (${\cal A} = \operatorname{Ab}$), one has

\begin{equation*} H ^ { n } ( {\cal C} , M ) = \operatorname { Ext } _ { Z {\bf C} } ^ { n } ( {\cal Z} , M ), \end{equation*}

where $\mathcal Z$ denotes the constant functor $Z \mathcal{C} \rightarrow \operatorname{Ab}$ (i.e. $Z ( C ) = \mathcal{Z}$, $Z ( \alpha ) = 1 _ { \mathbf{Z} }$ for any object $C$ and any morphism $\alpha$ of $\mathcal{C}$), and is taken in the category of additive functors $\text{Ab} ^ { \text{ZC} }$.

If $\mathcal{C}$ is a group (i.e. a category with one object and whose morphisms are invertible) and ${\cal A} = \operatorname{Ab}$, then the groups $H ^ { n } ( \mathcal{C} , M )$ are the cohomology groups (cf. also Cohomology group) of the group $\mathcal{C}$ with coefficients in $M$, which is a module over the group ring $Z \mathcal C $ (cf. also Cross product). In this case the co-induced functor $c M$ is a co-induced $Z \mathcal C $-module $\operatorname{Ab} ( Z ({\cal C} ) , M )$.

As for the case of groups, $n$-fold extensions of categories can be defined and the isomorphism with $n + 1$ cohomologies of categories can be established. Under additional assumptions, the properties of group cohomologies are obtained for category cohomologies (e.g. the universal coefficient formula for the cohomology group of a category, etc.).

For a commutative ring $K$, a $K$-category is a category $\mathcal{C}$ equipped with a $K$-module structure on each hom-set in such a way that composition induces a $K$-module homomorphism. If $K = \mathcal{Z}$, a $\mathcal Z$-category is just a pre-additive category. B. Mitchell has defined the (Hochshild) cohomology group of a small $K$-category $\mathcal{C}$ with coefficients in a bimodule (i.e., bifunctor) $F : {\cal C} ^ { * } \otimes _ { k } {\cal C} \rightarrow \operatorname{Ab}$ (where $\mathcal{C} ^ { * } \otimes_{ k} \mathcal{C}$ denotes the tensor product of categories). H.-J. Baues and G. Wirshing have introduced cohomology of a small category with coefficients in a natural system, which generalizes known concepts and uses Abelian-group-valued functors (i.e. modules) and bifunctors as coefficients.

References

[a1] H.-J. Baues, G. Wirshing, "Cohomology of small categories" J. Pure Appl. Algebra , 38 (1985) pp. 187–211
[a2] T. Datuashvili, "The cohomology of categories" Tr. Tbiliss. Mat. Inst. A. Razmadze, Akad. Nauk Gruzin.SSR , 62 (1979) pp. 28–37
[a3] G. Hoff, "On the cohomology of categories" Rend. Math. (VI) , 7 : 2 (1974) pp. 169–192
[a4] M.J. Lee, "A generalized Mayer–Vietoris sequence" Math. Jap. , 19 : 1 (1974) pp. 41–50
[a5] B. Mitchell, "Rings with several objects" Adv. Math. , 8 (1972) pp. 1–161
[a6] D.G. Quillen, "Higher algebraic $K$-theories" H. Bass (ed.) , Algebraic $K$-theory I , Lecture Notes Math. , 341 , Springer (1973) pp. 85–147
[a7] J.-E. Roos, "Sur les foncteurs derives de $\operatorname { lim }_\lambda$. Applications" C.R. Acad. Sci. Paris , 252 (1961) pp. 3702–3704
[a8] Ch.E. Watts, "A homology theory for small categories" , Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) , Springer (1966) pp. 331–335
How to Cite This Entry:
Category cohomology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Category_cohomology&oldid=12906
This article was adapted from an original article by T. Datuashvili (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article