|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | l1100102.png |
| + | $#A+1 = 114 n = 0 |
| + | $#C+1 = 114 : ~/encyclopedia/old_files/data/L110/L.1100010 \BMI l\EMI\AAhalgebra, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''lattice-ordered algebra'' | | ''lattice-ordered algebra'' |
| | | |
− | An [[Algebraic system|algebraic system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100102.png" /> over a totally ordered field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100103.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100104.png" /> is an associative algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100105.png" /> (cf. [[Associative rings and algebras|Associative rings and algebras]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100106.png" /> is a [[Lattice|lattice]] respect with the [[Partial order|partial order]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100107.png" /> and the following axioms hold: | + | An [[Algebraic system|algebraic system]] $ \{ A; \mathbf P , +, \cdot, \cle \} $ |
| + | over a totally ordered field $ \mathbf P $ |
| + | such that $ \{ A; \mathbf P , +, \cdot \} $ |
| + | is an associative algebra over $ \mathbf P $( |
| + | cf. [[Associative rings and algebras|Associative rings and algebras]]), $ \{ A; \cle \} $ |
| + | is a [[Lattice|lattice]] respect with the [[Partial order|partial order]] $ \cle $ |
| + | and the following axioms hold: |
| | | |
− | 1) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100108.png" />, | + | 1) for all $ a,b,c \in A $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100109.png" /></td> </tr></table>
| + | $$ |
| + | a \cle b \Rightarrow a + c \cle b + c, |
| + | $$ |
| | | |
− | 2) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001010.png" />, | + | 2) for all $ a,b,c \in A $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001011.png" /></td> </tr></table>
| + | $$ |
| + | ( c > 0 ) \& ( a \cle b ) \Rightarrow ( ac \cle bc ) \& ( ca \cle cb ) , |
| + | $$ |
| | | |
− | 3) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001013.png" />, | + | 3) for all $ a,b \in A $ |
| + | and $ \alpha \in \mathbf P $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001014.png" /></td> </tr></table>
| + | $$ |
| + | ( \alpha > 0 ) \& ( a \cle b ) \Rightarrow ( \alpha a \cle \alpha c ) . |
| + | $$ |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001015.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001016.png" /> is called a strict <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001018.png" />-algebra if for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001020.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001022.png" />. It is useful to describe an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001023.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001024.png" /> as an algebraic system of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001026.png" /> are the join and meet operations in the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001027.png" />. | + | An $ l $- |
| + | algebra $ A $ |
| + | is called a strict $ l $- |
| + | algebra if for $ a < b $ |
| + | and $ c > 0 $ |
| + | one has $ ac < bc $, |
| + | $ ca < cb $. |
| + | It is useful to describe an $ l $- |
| + | algebra $ \{ A; \mathbf P , +, \cdot, \cle \} $ |
| + | as an algebraic system of signature $ \{ \mathbf P, +, \cdot, \lor, \wedge \} $, |
| + | where $ \lor, \wedge $ |
| + | are the join and meet operations in the lattice $ \{ A, \cle \} $. |
| | | |
− | The most important examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001028.png" />-algebras are: the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001029.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001030.png" /> of all continuous real-valued functions on a [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001031.png" /> with respect to the natural operations and equipped with the order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001032.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001033.png" />, if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001034.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001035.png" />; and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001036.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001037.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001038.png" />-matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001039.png" /> with order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001040.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001041.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001042.png" />. | + | The most important examples of $ l $- |
| + | algebras are: the $ l $- |
| + | algebra $ {\mathcal C} ( X, \mathbf R ) $ |
| + | of all continuous real-valued functions on a [[Topological space|topological space]] $ X $ |
| + | with respect to the natural operations and equipped with the order $ f \cle g $, |
| + | for $ f,g \in {\mathcal C} ( X, \mathbf R ) $, |
| + | if and only if $ f ( x ) \cle g ( x ) $ |
| + | for all $ x \in X $; |
| + | and the $ l $- |
| + | algebra $ {\mathcal M} _ {n} ( \mathbf R ) $ |
| + | of all $ ( n \times n ) $- |
| + | matrices over $ \mathbf R $ |
| + | with order $ \| {a _ {ij } } \| \cle \| {b _ {ij } } \| $ |
| + | if and only if $ a _ {ij } \cle b _ {ij } $ |
| + | for all $ i,j $. |
| | | |
− | A homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001043.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001044.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001046.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001048.png" />-homomorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001049.png" /> is a [[Homomorphism|homomorphism]] of the algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001051.png" /> and a homomorphism of the lattices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001053.png" />. The kernel of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001054.png" />-homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001055.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001057.png" />-ideal, i.e., an [[Ideal|ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001058.png" /> that is also a convex sublattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001059.png" />. | + | A homomorphism $ \varphi : A \rightarrow B $ |
| + | of $ l $- |
| + | algebras $ A $ |
| + | and $ B $ |
| + | is an $ l $- |
| + | homomorphism if $ \varphi $ |
| + | is a [[Homomorphism|homomorphism]] of the algebras $ A $ |
| + | and $ B $ |
| + | and a homomorphism of the lattices $ A $ |
| + | and $ B $. |
| + | The kernel of an $ l $- |
| + | homomorphism of $ A $ |
| + | is an $ l $- |
| + | ideal, i.e., an [[Ideal|ideal]] of $ A $ |
| + | that is also a convex sublattice of $ A $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001060.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001061.png" /> is called the positive cone of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001063.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001064.png" />. For the positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001065.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001066.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001067.png" /> the following properties hold: | + | If $ P = \{ {x \in A } : {x \cge 0 } \} $, |
| + | then $ P $ |
| + | is called the positive cone of the $ l $- |
| + | algebra $ A $. |
| + | For the positive cone $ P $ |
| + | of an $ l $- |
| + | algebra $ A $ |
| + | the following properties hold: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001068.png" />; | + | 1) $ P + P \subseteq P $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001069.png" />; | + | 2) $ P \cap P = \{ 0 \} $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001070.png" />; | + | 3) $ P \cdot P \subseteq P $; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001071.png" />; | + | 4) $ \mathbf P ^ {+} \cdot P \subseteq P $; |
| | | |
− | 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001072.png" /> is a lattice respect with the induced order. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png" />. If, in an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001074.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001075.png" />, one can find a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001076.png" /> with the properties 1)–5), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001077.png" /> can be given the structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001078.png" />-algebra with positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001079.png" /> by setting: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001080.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001081.png" />. It is correct to identify the order of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001082.png" />-algebra with its positive cone, and so an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001083.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001084.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001085.png" />. | + | 5) $ P $ |
| + | is a lattice respect with the induced order. Here, $ \mathbf P ^ {+} = \{ {\alpha \in \mathbf P } : {\alpha \geq 0 } \} $. |
| + | If, in an algebra $ A $ |
| + | over $ \mathbf P $, |
| + | one can find a subset $ P $ |
| + | with the properties 1)–5), then $ A $ |
| + | can be given the structure of an $ l $- |
| + | algebra with positive cone $ P $ |
| + | by setting: $ x \cle y \Rightarrow y - x \in P $ |
| + | for $ x,y \in A $. |
| + | It is correct to identify the order of an $ l $- |
| + | algebra with its positive cone, and so an $ l $- |
| + | algebra $ A $ |
| + | is often denoted by $ ( A,P ) $. |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001086.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001087.png" /> is strict if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001089.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001090.png" />. | + | An $ l $- |
| + | algebra $ ( A,P ) $ |
| + | is strict if and only if $ xy \neq 0 $ |
| + | for all $ x,y \in P $. |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001091.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001092.png" /> is totally-ordered (an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001095.png" />-algebra) if its order is total (cf. also [[Totally ordered set|Totally ordered set]]). An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001096.png" />-algebra is called an [[F-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001097.png" />-algebra]] if it is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001098.png" />-subalgebra of the Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001099.png" />-algebras. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010100.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010101.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010102.png" />-algebra if and only if there exists a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010103.png" /> of total orders on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010104.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010105.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010106.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010107.png" />-algebras have been well investigated. Every Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010109.png" />-algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010110.png" /> is commutative. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010111.png" /> of nilpotent elements in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010112.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010113.png" /> is a convex ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010114.png" /> and the quotient algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010115.png" /> has no zero divisors. There exists a full description of the finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010116.png" />-algebras. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010117.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010118.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010119.png" />-algebra if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010120.png" />, | + | An $ l $- |
| + | algebra $ A $ |
| + | is totally-ordered (an $ o $- |
| + | algebra) if its order is total (cf. also [[Totally ordered set|Totally ordered set]]). An $ l $- |
| + | algebra is called an [[F-algebra| $ f $- |
| + | algebra]] if it is an $ l $- |
| + | subalgebra of the Cartesian product of $ 0 $- |
| + | algebras. An $ l $- |
| + | algebra $ ( A,P ) $ |
| + | is an $ f $- |
| + | algebra if and only if there exists a set $ \{ {P _ {i} } : {i \in I } \} $ |
| + | of total orders on $ A $ |
| + | such that $ P = \cap _ {i \in I } P _ {i} $. |
| + | $ o $- |
| + | and $ f $- |
| + | algebras have been well investigated. Every Archimedean $ f $- |
| + | algebra over $ \mathbf R $ |
| + | is commutative. The set $ N $ |
| + | of nilpotent elements in an $ o $- |
| + | algebra $ A $ |
| + | is a convex ideal of $ A $ |
| + | and the quotient algebra $ A/N $ |
| + | has no zero divisors. There exists a full description of the finite-dimensional $ o $- |
| + | algebras. An $ l $- |
| + | algebra $ A $ |
| + | is an $ f $- |
| + | algebra if and only if for all $ a,b,c \in A $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010121.png" /></td> </tr></table>
| + | $$ |
| + | ( a \wedge b = 0 ) \& ( c \cge 0 ) \Rightarrow ( ca \wedge b = 0 ) \& ( ac \wedge b = 0 ) . |
| + | $$ |
| | | |
− | The structure of the convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010122.png" />-subalgebras and prime ideals has been investigated. | + | The structure of the convex $ l $- |
| + | subalgebras and prime ideals has been investigated. |
| | | |
− | The theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010123.png" />-algebras is used in the study of order-preserving linear transformations and orthomorphisms of ordered vector spaces (i.e., linear transformations preserving the orthogonality properties). | + | The theory of $ l $- |
| + | algebras is used in the study of order-preserving linear transformations and orthomorphisms of ordered vector spaces (i.e., linear transformations preserving the orthogonality properties). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Bigard, K. Keimel, S. Wolfenstein, "Groupes et anneaux rétiqulés" , Springer (1977)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Bigard, K. Keimel, S. Wolfenstein, "Groupes et anneaux rétiqulés" , Springer (1977)</TD></TR></table> |
lattice-ordered algebra
An algebraic system $ \{ A; \mathbf P , +, \cdot, \cle \} $
over a totally ordered field $ \mathbf P $
such that $ \{ A; \mathbf P , +, \cdot \} $
is an associative algebra over $ \mathbf P $(
cf. Associative rings and algebras), $ \{ A; \cle \} $
is a lattice respect with the partial order $ \cle $
and the following axioms hold:
1) for all $ a,b,c \in A $,
$$
a \cle b \Rightarrow a + c \cle b + c,
$$
2) for all $ a,b,c \in A $,
$$
( c > 0 ) \& ( a \cle b ) \Rightarrow ( ac \cle bc ) \& ( ca \cle cb ) ,
$$
3) for all $ a,b \in A $
and $ \alpha \in \mathbf P $,
$$
( \alpha > 0 ) \& ( a \cle b ) \Rightarrow ( \alpha a \cle \alpha c ) .
$$
An $ l $-
algebra $ A $
is called a strict $ l $-
algebra if for $ a < b $
and $ c > 0 $
one has $ ac < bc $,
$ ca < cb $.
It is useful to describe an $ l $-
algebra $ \{ A; \mathbf P , +, \cdot, \cle \} $
as an algebraic system of signature $ \{ \mathbf P, +, \cdot, \lor, \wedge \} $,
where $ \lor, \wedge $
are the join and meet operations in the lattice $ \{ A, \cle \} $.
The most important examples of $ l $-
algebras are: the $ l $-
algebra $ {\mathcal C} ( X, \mathbf R ) $
of all continuous real-valued functions on a topological space $ X $
with respect to the natural operations and equipped with the order $ f \cle g $,
for $ f,g \in {\mathcal C} ( X, \mathbf R ) $,
if and only if $ f ( x ) \cle g ( x ) $
for all $ x \in X $;
and the $ l $-
algebra $ {\mathcal M} _ {n} ( \mathbf R ) $
of all $ ( n \times n ) $-
matrices over $ \mathbf R $
with order $ \| {a _ {ij } } \| \cle \| {b _ {ij } } \| $
if and only if $ a _ {ij } \cle b _ {ij } $
for all $ i,j $.
A homomorphism $ \varphi : A \rightarrow B $
of $ l $-
algebras $ A $
and $ B $
is an $ l $-
homomorphism if $ \varphi $
is a homomorphism of the algebras $ A $
and $ B $
and a homomorphism of the lattices $ A $
and $ B $.
The kernel of an $ l $-
homomorphism of $ A $
is an $ l $-
ideal, i.e., an ideal of $ A $
that is also a convex sublattice of $ A $.
If $ P = \{ {x \in A } : {x \cge 0 } \} $,
then $ P $
is called the positive cone of the $ l $-
algebra $ A $.
For the positive cone $ P $
of an $ l $-
algebra $ A $
the following properties hold:
1) $ P + P \subseteq P $;
2) $ P \cap P = \{ 0 \} $;
3) $ P \cdot P \subseteq P $;
4) $ \mathbf P ^ {+} \cdot P \subseteq P $;
5) $ P $
is a lattice respect with the induced order. Here, $ \mathbf P ^ {+} = \{ {\alpha \in \mathbf P } : {\alpha \geq 0 } \} $.
If, in an algebra $ A $
over $ \mathbf P $,
one can find a subset $ P $
with the properties 1)–5), then $ A $
can be given the structure of an $ l $-
algebra with positive cone $ P $
by setting: $ x \cle y \Rightarrow y - x \in P $
for $ x,y \in A $.
It is correct to identify the order of an $ l $-
algebra with its positive cone, and so an $ l $-
algebra $ A $
is often denoted by $ ( A,P ) $.
An $ l $-
algebra $ ( A,P ) $
is strict if and only if $ xy \neq 0 $
for all $ x,y \in P $.
An $ l $-
algebra $ A $
is totally-ordered (an $ o $-
algebra) if its order is total (cf. also Totally ordered set). An $ l $-
algebra is called an $ f $-
algebra if it is an $ l $-
subalgebra of the Cartesian product of $ 0 $-
algebras. An $ l $-
algebra $ ( A,P ) $
is an $ f $-
algebra if and only if there exists a set $ \{ {P _ {i} } : {i \in I } \} $
of total orders on $ A $
such that $ P = \cap _ {i \in I } P _ {i} $.
$ o $-
and $ f $-
algebras have been well investigated. Every Archimedean $ f $-
algebra over $ \mathbf R $
is commutative. The set $ N $
of nilpotent elements in an $ o $-
algebra $ A $
is a convex ideal of $ A $
and the quotient algebra $ A/N $
has no zero divisors. There exists a full description of the finite-dimensional $ o $-
algebras. An $ l $-
algebra $ A $
is an $ f $-
algebra if and only if for all $ a,b,c \in A $,
$$
( a \wedge b = 0 ) \& ( c \cge 0 ) \Rightarrow ( ca \wedge b = 0 ) \& ( ac \wedge b = 0 ) .
$$
The structure of the convex $ l $-
subalgebras and prime ideals has been investigated.
The theory of $ l $-
algebras is used in the study of order-preserving linear transformations and orthomorphisms of ordered vector spaces (i.e., linear transformations preserving the orthogonality properties).
References
[a1] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) |
[a2] | A. Bigard, K. Keimel, S. Wolfenstein, "Groupes et anneaux rétiqulés" , Springer (1977) |