|
|
Line 1: |
Line 1: |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736801.png" /> of symmetries of a polytope (cf. [[Polyhedron|Polyhedron]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736802.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736803.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736804.png" />, that is, the group of all motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736805.png" /> which send <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736806.png" /> to itself. A polytope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736807.png" /> is called regular if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736808.png" /> acts transitively on the set of its "flag set of a polytopeflags" , that is, collections
| + | <!-- |
| + | p0736801.png |
| + | $#A+1 = 58 n = 0 |
| + | $#C+1 = 58 : ~/encyclopedia/old_files/data/P073/P.0703680 Polyhedron group |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p0736809.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368010.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368011.png" />-dimensional closed face and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368012.png" />. The group of symmetries of a regular polytope is generated by reflections (see [[Reflection group|Reflection group]]). Its fundamental domain is a simplicial cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368013.png" /> whose vertex is the centre of the polytope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368014.png" />, and whose edges pass through the centres of the faces constituting some flag <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368015.png" />. By the same token the generating reflections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368016.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368017.png" /> have a natural enumeration: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368018.png" /> is the reflection relative to the hyperplane bounding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368019.png" /> which does not pass through the centre of the face <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368020.png" />. The generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368022.png" /> commute for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368023.png" />, and the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368024.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368025.png" /> — the number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368026.png" />-dimensional (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368027.png" />-dimensional) faces of the polytope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368028.png" /> containing the face <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368029.png" /> (if it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368031.png" />). The sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368032.png" /> is called the Schläfli symbol of the polytopes. The three-dimensional regular polytopes (Platonic solids) have the following Schläfli symbols: the [[Tetrahedron|tetrahedron]] — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368033.png" />, the [[Cube|cube]] — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368034.png" />, the [[Octahedron|octahedron]] — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368035.png" />, the [[Dodecahedron|dodecahedron]] — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368036.png" />, and the [[Icosahedron|icosahedron]] — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368037.png" />.
| + | The group $ \mathop{\rm Sym} P $ |
| + | of symmetries of a polytope (cf. [[Polyhedron|Polyhedron]]) $ P $ |
| + | in an $ n $- |
| + | dimensional Euclidean space $ E ^ {n} $, |
| + | that is, the group of all motions of $ E ^ {n} $ |
| + | which send $ P $ |
| + | to itself. A polytope $ P $ |
| + | is called regular if $ \mathop{\rm Sym} P $ |
| + | acts transitively on the set of its "flag set of a polytopeflags" , that is, collections |
| | | |
− | The Schläfli symbol determines a regular polytope up to a similarity. Reversal of a Schläfli symbol corresponds to transition to the reciprocal polytope, whose vertices ly at the centres of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368038.png" />-dimensional faces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368039.png" />. Reciprocal polytopes have the same symmetry group.
| + | $$ |
| + | F = \{ \Gamma _ {0} \dots \Gamma _ {n-} 1 \} |
| + | $$ |
| | | |
− | All possible Schläfli symbols of regular polytopes can be obtained from the classification of finite reflection groups, by selecting those with a linear Coxeter graph. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368040.png" /> there are only 3 regular polytopes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368041.png" />: the simplex, the cube and the polytope reciprocal to the cube (the analogue of the octahedron). Their Schläfli symbols are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368044.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368045.png" />-dimensional space there are 6 regular polytopes: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368050.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368051.png" />.
| + | where $ \Gamma _ {k} $ |
| + | is a $ k $- |
| + | dimensional closed face and $ \Gamma _ {k-} 1 \subset \Gamma _ {k} $. |
| + | The group of symmetries of a regular polytope is generated by reflections (see [[Reflection group|Reflection group]]). Its fundamental domain is a simplicial cone $ K $ |
| + | whose vertex is the centre of the polytope $ P $, |
| + | and whose edges pass through the centres of the faces constituting some flag $ F $. |
| + | By the same token the generating reflections $ r _ {1} \dots r _ {n} $ |
| + | of the group $ \mathop{\rm Sym} P $ |
| + | have a natural enumeration: $ r _ {k} $ |
| + | is the reflection relative to the hyperplane bounding $ K $ |
| + | which does not pass through the centre of the face $ \Gamma _ {k-} 1 $. |
| + | The generators $ r _ {k} $ |
| + | and $ r _ {l} $ |
| + | commute for $ | k - l | \geq 2 $, |
| + | and the order of $ r _ {k} r _ {k+} 1 $ |
| + | is equal to $ p _ {k} $— |
| + | the number of $ k $- |
| + | dimensional (or $ ( k- 1 ) $- |
| + | dimensional) faces of the polytope $ \Gamma _ {k+} 1 $ |
| + | containing the face $ \Gamma _ {k-} 2 $( |
| + | if it is assumed that $ \Gamma _ {n} = P $ |
| + | and $ \Gamma _ {-} 1 = \emptyset $). |
| + | The sequence $ \{ p _ {1} \dots p _ {n-} 1 \} $ |
| + | is called the Schläfli symbol of the polytopes. The three-dimensional regular polytopes (Platonic solids) have the following Schläfli symbols: the [[Tetrahedron|tetrahedron]] — $ \{ 3 , 3 \} $, |
| + | the [[Cube|cube]] — $ \{ 4 , 3 \} $, |
| + | the [[Octahedron|octahedron]] — $ \{ 3 , 4 \} $, |
| + | the [[Dodecahedron|dodecahedron]] — $ \{ 5 , 3 \} $, |
| + | and the [[Icosahedron|icosahedron]] — $ \{ 3 , 5 \} $. |
| | | |
− | Each face of a regular polytope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368052.png" /> is also a regular polytope, the Schläfli symbol of which is the initial segment of the Schläfli symbol of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368053.png" />. For example, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368054.png" />-dimensional face of the polytope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368055.png" /> has the Schläfli symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368056.png" />, that is, it is a [[Dodecahedron|dodecahedron]].
| + | The Schläfli symbol determines a regular polytope up to a similarity. Reversal of a Schläfli symbol corresponds to transition to the reciprocal polytope, whose vertices ly at the centres of the $ ( n- 1 ) $- |
| + | dimensional faces of $ P $. |
| + | Reciprocal polytopes have the same symmetry group. |
| + | |
| + | All possible Schläfli symbols of regular polytopes can be obtained from the classification of finite reflection groups, by selecting those with a linear Coxeter graph. For $ n\geq 5 $ |
| + | there are only 3 regular polytopes in $ E ^ {n} $: |
| + | the simplex, the cube and the polytope reciprocal to the cube (the analogue of the octahedron). Their Schläfli symbols are $ \{ 3 \dots 3 \} $, |
| + | $ \{ 4 , 3 \dots 3 \} $ |
| + | and $ \{ 3 \dots 3 , 4 \} $. |
| + | In $ 4 $- |
| + | dimensional space there are 6 regular polytopes: $ \{ 3 , 3 , 3 \} $, |
| + | $ \{ 4 , 3 , 3 \} $, |
| + | $ \{ 3 , 3 , 4 \} $, |
| + | $ \{ 3 , 4 , 3 \} $, |
| + | $ \{ 5 , 3 , 3 \} $, |
| + | and $ \{ 3 , 3 , 5 \} $. |
| + | |
| + | Each face of a regular polytope $ P $ |
| + | is also a regular polytope, the Schläfli symbol of which is the initial segment of the Schläfli symbol of $ P $. |
| + | For example, a $ 3 $- |
| + | dimensional face of the polytope $ \{ 5 , 3 , 3 \} $ |
| + | has the Schläfli symbol $ \{ 5 , 3 \} $, |
| + | that is, it is a [[Dodecahedron|dodecahedron]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.S.M. Coxeter, "Regular polytopes" , Dover, reprint (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.S.M. Coxeter, "Regular polytopes" , Dover, reprint (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
| A presentation of the polyhedron group is given by | | A presentation of the polyhedron group is given by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368057.png" /></td> </tr></table> | + | $$ |
| + | < r _ {1} \dots r _ {n} \mid ( r _ {k} r _ {l} ) ^ {2} = 1 \ \ |
| + | \textrm{ for } | k- l | \geq 2 ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073680/p07368058.png" /></td> </tr></table>
| + | $$ |
| + | ( r _ {k} r _ {k+} 1 ) ^ {2} = p _ {k} \ \textrm{ for } k = 1 \dots n- 1 > . |
| + | $$ |
| | | |
| This shows that this group is a [[Coxeter group|Coxeter group]]. | | This shows that this group is a [[Coxeter group|Coxeter group]]. |
The group $ \mathop{\rm Sym} P $
of symmetries of a polytope (cf. Polyhedron) $ P $
in an $ n $-
dimensional Euclidean space $ E ^ {n} $,
that is, the group of all motions of $ E ^ {n} $
which send $ P $
to itself. A polytope $ P $
is called regular if $ \mathop{\rm Sym} P $
acts transitively on the set of its "flag set of a polytopeflags" , that is, collections
$$
F = \{ \Gamma _ {0} \dots \Gamma _ {n-} 1 \}
$$
where $ \Gamma _ {k} $
is a $ k $-
dimensional closed face and $ \Gamma _ {k-} 1 \subset \Gamma _ {k} $.
The group of symmetries of a regular polytope is generated by reflections (see Reflection group). Its fundamental domain is a simplicial cone $ K $
whose vertex is the centre of the polytope $ P $,
and whose edges pass through the centres of the faces constituting some flag $ F $.
By the same token the generating reflections $ r _ {1} \dots r _ {n} $
of the group $ \mathop{\rm Sym} P $
have a natural enumeration: $ r _ {k} $
is the reflection relative to the hyperplane bounding $ K $
which does not pass through the centre of the face $ \Gamma _ {k-} 1 $.
The generators $ r _ {k} $
and $ r _ {l} $
commute for $ | k - l | \geq 2 $,
and the order of $ r _ {k} r _ {k+} 1 $
is equal to $ p _ {k} $—
the number of $ k $-
dimensional (or $ ( k- 1 ) $-
dimensional) faces of the polytope $ \Gamma _ {k+} 1 $
containing the face $ \Gamma _ {k-} 2 $(
if it is assumed that $ \Gamma _ {n} = P $
and $ \Gamma _ {-} 1 = \emptyset $).
The sequence $ \{ p _ {1} \dots p _ {n-} 1 \} $
is called the Schläfli symbol of the polytopes. The three-dimensional regular polytopes (Platonic solids) have the following Schläfli symbols: the tetrahedron — $ \{ 3 , 3 \} $,
the cube — $ \{ 4 , 3 \} $,
the octahedron — $ \{ 3 , 4 \} $,
the dodecahedron — $ \{ 5 , 3 \} $,
and the icosahedron — $ \{ 3 , 5 \} $.
The Schläfli symbol determines a regular polytope up to a similarity. Reversal of a Schläfli symbol corresponds to transition to the reciprocal polytope, whose vertices ly at the centres of the $ ( n- 1 ) $-
dimensional faces of $ P $.
Reciprocal polytopes have the same symmetry group.
All possible Schläfli symbols of regular polytopes can be obtained from the classification of finite reflection groups, by selecting those with a linear Coxeter graph. For $ n\geq 5 $
there are only 3 regular polytopes in $ E ^ {n} $:
the simplex, the cube and the polytope reciprocal to the cube (the analogue of the octahedron). Their Schläfli symbols are $ \{ 3 \dots 3 \} $,
$ \{ 4 , 3 \dots 3 \} $
and $ \{ 3 \dots 3 , 4 \} $.
In $ 4 $-
dimensional space there are 6 regular polytopes: $ \{ 3 , 3 , 3 \} $,
$ \{ 4 , 3 , 3 \} $,
$ \{ 3 , 3 , 4 \} $,
$ \{ 3 , 4 , 3 \} $,
$ \{ 5 , 3 , 3 \} $,
and $ \{ 3 , 3 , 5 \} $.
Each face of a regular polytope $ P $
is also a regular polytope, the Schläfli symbol of which is the initial segment of the Schläfli symbol of $ P $.
For example, a $ 3 $-
dimensional face of the polytope $ \{ 5 , 3 , 3 \} $
has the Schläfli symbol $ \{ 5 , 3 \} $,
that is, it is a dodecahedron.
References
[1] | H.S.M. Coxeter, "Regular polytopes" , Dover, reprint (1973) |
[2] | B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian) |
A presentation of the polyhedron group is given by
$$
< r _ {1} \dots r _ {n} \mid ( r _ {k} r _ {l} ) ^ {2} = 1 \ \
\textrm{ for } | k- l | \geq 2 ;
$$
$$
( r _ {k} r _ {k+} 1 ) ^ {2} = p _ {k} \ \textrm{ for } k = 1 \dots n- 1 > .
$$
This shows that this group is a Coxeter group.
References
[a1] | H.S.M. Coxeter, "Regular complex polytopes" , Cambridge Univ. Press (1990) |