Namespaces
Variants
Actions

Difference between revisions of "Semi-simple matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
Line 1: Line 1:
A square [[Matrix|matrix]] over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843801.png" /> similar to a matrix of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843802.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843803.png" /> is a matrix over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843804.png" /> whose characteristic polynomial is irreducible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843806.png" /> (cf. [[Irreducible polynomial|Irreducible polynomial]]). For a matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843807.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843808.png" />, the following three statements are equivalent: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s0843809.png" /> is semi-simple; 2) the minimum polynomial of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438010.png" /> has no multiple factors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438011.png" />; and 3) the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438012.png" /> is semi-simple (cf. [[Semi-simple algebra|Semi-simple algebra]]).
+
A square [[matrix]] over a field [[Similar matrices|similar]] to a matrix in block diagonal form \mathrm{diag}[D_1,\ldots,D_k], where each D_i is a matrix over F whose [[characteristic polynomial]] is irreducible in F[X], $j=1,\ldots,l$ (cf. [[Irreducible polynomial]]). For a matrix A over a field F, the following three statements are equivalent: 1) A is semi-simple; 2) the [[Minimal polynomial of a matrix|minimal polynomial]] of A has no multiple factors in F[X]; and 3) the algebra F[A] is a [[semi-simple algebra]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438013.png" /> is a [[Perfect field|perfect field]], then a semi-simple matrix over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438014.png" /> is similar to a diagonal matrix over a certain extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438015.png" />. For any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438016.png" /> over a perfect field there is a unique representation in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438018.png" /> is a semi-simple matrix, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438019.png" /> is nilpotent and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438020.png" />; the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438022.png" /> belong to the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084380/s08438023.png" />.
+
If F is a [[perfect field]], then a semi-simple matrix over F is similar to a diagonal matrix over a certain extension of F. For any square matrix A over a perfect field there is a unique representation in the form $A = A_S + A_N$, where A_S is a semi-simple matrix, A_N is nilpotent and $A_SA_N = A_NA_S$; the matrices A_S and A_N belong to the algebra F[A].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , '''2''' , Hermann  (1959)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , '''2''' , Hermann  (1959)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Revision as of 18:03, 12 November 2017

A square matrix over a field F similar to a matrix in block diagonal form \mathrm{diag}[D_1,\ldots,D_k], where each D_i is a matrix over F whose characteristic polynomial is irreducible in F[X], j=1,\ldots,l (cf. Irreducible polynomial). For a matrix A over a field F, the following three statements are equivalent: 1) A is semi-simple; 2) the minimal polynomial of A has no multiple factors in F[X]; and 3) the algebra F[A] is a semi-simple algebra.

If F is a perfect field, then a semi-simple matrix over F is similar to a diagonal matrix over a certain extension of F. For any square matrix A over a perfect field there is a unique representation in the form A = A_S + A_N, where A_S is a semi-simple matrix, A_N is nilpotent and A_SA_N = A_NA_S; the matrices A_S and A_N belong to the algebra F[A].

References

[1] N. Bourbaki, "Algèbre" , Eléments de mathématiques , 2 , Hermann (1959)
How to Cite This Entry:
Semi-simple matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-simple_matrix&oldid=12282
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article