Namespaces
Variants
Actions

Difference between revisions of "Harmonic measure"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A concept in the theory of harmonic functions (cf. [[Harmonic function|Harmonic function]]) connected with estimating the modulus of an analytic function inside a domain if certain bounds on the modulus on the boundary of the domain are known [[#References|[1]]], [[#References|[2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465001.png" /> be a bounded open set in the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465002.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465003.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465004.png" /> be the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465005.png" />; and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465006.png" /> be a finite real-valued continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465007.png" />. To each such function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465008.png" /> there corresponds a unique harmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h0465009.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650010.png" /> which, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650011.png" />, is a generalized solution of the [[Dirichlet problem|Dirichlet problem]]. If the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650012.png" /> is assumed to be fixed, the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650013.png" /> will define on the compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650014.png" /> a positive Radon measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650015.png" />, which is called the harmonic measure at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650016.png" />. The formula for the representation of the generalized solution of the Dirichlet problem,
+
<!--
 +
h0465001.png
 +
$#A+1 = 87 n = 0
 +
$#C+1 = 87 : ~/encyclopedia/old_files/data/H046/H.0406500 Harmonic measure
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650017.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
obtained by Ch.J. de la Vallée-Poussin by the [[Balayage method|balayage method]], is valid for all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650018.png" /> which are continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650019.png" />. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650020.png" /> is an arbitrary Borel set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650021.png" />, the harmonic measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650023.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650024.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650025.png" /> is equal to the value at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650026.png" /> of the generalized solution of the Dirichlet problem for the characteristic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650028.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650029.png" />.
+
A concept in the theory of harmonic functions (cf. [[Harmonic function|Harmonic function]]) connected with estimating the modulus of an analytic function inside a domain if certain bounds on the modulus on the boundary of the domain are known [[#References|[1]]], [[#References|[2]]]. Let  $  D $
 +
be a bounded open set in the Euclidean space  $  \mathbf R  ^ {n} $,  
 +
$  n \geq  2 $;
 +
let  $  \Gamma = \partial  D $
 +
be the boundary of  $  D $;
 +
and let  $  f $
 +
be a finite real-valued continuous function on $  \Gamma $.  
 +
To each such function  $  f $
 +
there corresponds a unique harmonic function  $  H _ {f} ( x) $
 +
on  $  D $
 +
which, for  $  f $,  
 +
is a generalized solution of the [[Dirichlet problem|Dirichlet problem]]. If the point  $  x \in D $
 +
is assumed to be fixed, the functional  $  H _ {f} ( x) $
 +
will define on the compact set  $  \Gamma $
 +
a positive Radon measure $  \omega ( x) = \omega ( x, D) $,  
 +
which is called the harmonic measure at the point  $  x $.  
 +
The formula for the representation of the generalized solution of the Dirichlet problem,
  
The basic properties of a harmonic measure are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650030.png" /> is a harmonic function of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650032.png" />;
+
$$
 +
H _ {f} ( x)  = \
 +
\int\limits f ( y)  d \omega ( x; D),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650033.png" /></td> </tr></table>
+
obtained by Ch.J. de la Vallée-Poussin by the [[Balayage method|balayage method]], is valid for all functions  $  f $
 +
which are continuous on  $  \Gamma $.
 +
Moreover, if  $  E $
 +
is an arbitrary Borel set on  $  \Gamma $,
 +
the harmonic measure  $  \omega ( x; E, D) $,
 +
$  x \in D $,
 +
of  $  E $
 +
at  $  x $
 +
is equal to the value at  $  x $
 +
of the generalized solution of the Dirichlet problem for the characteristic function  $  \chi _ {E} ( y) $,
 +
$  y \in \Gamma $,
 +
of  $  E $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650034.png" /></td> </tr></table>
+
The basic properties of a harmonic measure are: $  \omega ( x; E, D) $
 +
is a harmonic function of the point  $  x $
 +
in  $  D $;
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650035.png" /> is a domain and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650036.png" /> even at a single point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650038.png" />.
+
$$
 +
0 \leq  \omega ( x;  E, D)  \leq  1;
 +
$$
  
In the last-named case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650039.png" /> is known as a set of harmonic measure zero. If a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650040.png" /> has harmonic measure zero with respect to some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650042.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650043.png" />, then it has harmonic measure zero with respect to all other domains, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650044.png" /> is a set of absolute harmonic measure zero. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650045.png" /> has absolute harmonic measure zero if and only if it has zero (harmonic) [[Capacity|capacity]].
+
$$
 +
1 - \omega ( x;  E, D)  = \omega ( x;  \Gamma \setminus  E, D);
 +
$$
  
As regards applications to the theory of functions of a complex variable, the dependence of a harmonic measure on the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650046.png" /> is of special importance. This dependence is expressed by the principle of harmonic measure (cf. [[Harmonic measure, principle of|Harmonic measure, principle of]]), which states that a harmonic measure does not decrease under mappings of the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650047.png" /> realized by univalent analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650049.png" />. In particular, a harmonic measure remains unchanged under a one-to-one conformal mapping.
+
if  $  D $
 +
is a domain and  $  \omega ( x;  E, D) = 0 $
 +
even at a single point  $  x \in D $,
 +
then  $  \omega ( x;  E, D) \equiv 0 $.
  
Explicit computations of harmonic measures are possible only for the simplest domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650050.png" /> (mainly for the disc, for the sphere, for a half-plane, and for a half-space; see [[Poisson integral|Poisson integral]]). This is the reason for the importance of the various estimation methods for harmonic measure [[#References|[4]]], [[#References|[5]]], [[#References|[6]]], [[#References|[7]]], which are mainly based on the principle of extension of domain (cf. [[Extension of domain, principle of|Extension of domain, principle of]]). In the simplest form, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650051.png" />, this principle consists in the following: Let a finitely-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650052.png" /> be bounded by a finite number of Jordan curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650053.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650054.png" /> be an arc on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650055.png" />. Then, if the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650056.png" /> is extended in some way across the complementary part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650057.png" /> of the boundary, the harmonic measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650058.png" /> can only increase.
+
In the last-named case  $  E $
 +
is known as a set of harmonic measure zero. If a compact set  $  K \subset  \mathbf R  ^ {n} $
 +
has harmonic measure zero with respect to some domain  $  D $,
 +
$  K \subset  D $,
 +
i.e.  $  \omega ( x;  K, D \setminus  K) = 0 $,
 +
then it has harmonic measure zero with respect to all other domains, i.e.  $  K $
 +
is a set of absolute harmonic measure zero. A set  $  K $
 +
has absolute harmonic measure zero if and only if it has zero (harmonic) [[Capacity|capacity]].
 +
 
 +
As regards applications to the theory of functions of a complex variable, the dependence of a harmonic measure on the domain  $  D $
 +
is of special importance. This dependence is expressed by the principle of harmonic measure (cf. [[Harmonic measure, principle of|Harmonic measure, principle of]]), which states that a harmonic measure does not decrease under mappings of the domain  $  D $
 +
realized by univalent analytic functions  $  w = w( z) $,
 +
$  z \in D $.
 +
In particular, a harmonic measure remains unchanged under a one-to-one conformal mapping.
 +
 
 +
Explicit computations of harmonic measures are possible only for the simplest domains $  D $(
 +
mainly for the disc, for the sphere, for a half-plane, and for a half-space; see [[Poisson integral|Poisson integral]]). This is the reason for the importance of the various estimation methods for harmonic measure [[#References|[4]]], [[#References|[5]]], [[#References|[6]]], [[#References|[7]]], which are mainly based on the principle of extension of domain (cf. [[Extension of domain, principle of|Extension of domain, principle of]]). In the simplest form, for $  n = 2 $,  
 +
this principle consists in the following: Let a finitely-connected domain $  D $
 +
be bounded by a finite number of Jordan curves $  \Gamma $
 +
and let $  \alpha $
 +
be an arc on $  \Gamma $.  
 +
Then, if the domain $  D $
 +
is extended in some way across the complementary part $  \Gamma \setminus  \alpha $
 +
of the boundary, the harmonic measure $  \omega ( z;  \alpha , D) $
 +
can only increase.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Carleman,  "Sur les fonctions inverses des fonctions entières d'ordre fini"  ''Ark. Mat.'' , '''15''' :  10  (1921)  pp. 1–7</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F. Nevanlinna,  R. Nevanlinna,  "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie"  ''Acta Soc. Sci. Fennica'' , '''50''' :  5  (1922)  pp. 1–46</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Ch.J. de la Vallée-Poussin,  ''Ann. Inst. H. Poincaré'' , '''2'''  (1932)  pp. 169–232</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  K. Haliste,  "Estimates of harmonic measure"  ''Ark. Mat.'' , '''6''' :  1  (1965)  pp. 1–31</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Carleman,  "Sur les fonctions inverses des fonctions entières d'ordre fini"  ''Ark. Mat.'' , '''15''' :  10  (1921)  pp. 1–7</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F. Nevanlinna,  R. Nevanlinna,  "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie"  ''Acta Soc. Sci. Fennica'' , '''50''' :  5  (1922)  pp. 1–46</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Ch.J. de la Vallée-Poussin,  ''Ann. Inst. H. Poincaré'' , '''2'''  (1932)  pp. 169–232</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  K. Haliste,  "Estimates of harmonic measure"  ''Ark. Mat.'' , '''6''' :  1  (1965)  pp. 1–31</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Harmonic measure is an important tool in axiomatic potential theory (cf. [[Potential theory, abstract|Potential theory, abstract]]), see [[#References|[a1]]].
 
Harmonic measure is an important tool in axiomatic potential theory (cf. [[Potential theory, abstract|Potential theory, abstract]]), see [[#References|[a1]]].
  
For domains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650059.png" /> very precise estimates for harmonic measure in terms of [[Hausdorff measure|Hausdorff measure]] have been obtained recently. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650060.png" /> be a continuous increasing function for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650062.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650063.png" /> be a [[Borel set|Borel set]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650064.png" /> denote the Hausdorff measure with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650066.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650067.png" /> be a domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650068.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650069.png" />. Makarov's theorems [[#References|[a3]]] are: 1) Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650070.png" /> is simply connected. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650071.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650072.png" /> is singular with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650073.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650074.png" />. 2) There exist constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650076.png" /> with the following property: Let
+
For domains in $  \mathbf C $
 +
very precise estimates for harmonic measure in terms of [[Hausdorff measure|Hausdorff measure]] have been obtained recently. Let h( t) $
 +
be a continuous increasing function for $  t \geq  0 $,
 +
h( 0)= 0 $,  
 +
and let $  E $
 +
be a [[Borel set|Borel set]]. Let $  \Lambda _ {h} ( E) $
 +
denote the Hausdorff measure with respect to h $
 +
of $  E $.  
 +
Let $  D $
 +
be a domain in $  \mathbf C $
 +
and set $  \omega ( E) = \omega ( x;  E, D) $.  
 +
Makarov's theorems [[#References|[a3]]] are: 1) Suppose that $  D $
 +
is simply connected. If $  \lim\limits _ {t \rightarrow \infty }  h( t) /t = 0 $,  
 +
then $  \omega $
 +
is singular with respect to $  \Lambda _ {h} $,  
 +
i.e. $  \omega \perp  \Lambda _ {h} $.  
 +
2) There exist constants $  C _ {1} $,  
 +
$  C _ {2} $
 +
with the following property: Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650077.png" /></td> </tr></table>
+
$$
 +
h _ {i} ( t)  = t  \mathop{\rm exp} \left \{ C _ {i} \sqrt {\left (  \mathop{\rm log} 
 +
\frac{1}{t}
 +
\right )  \mathop{\rm log}  \mathop{\rm log}  \mathop{\rm log} 
 +
\frac{1}{t}
 +
}
 +
\right \} ,\  i = 1, 2.
 +
$$
  
Then for every Jordan domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650079.png" /> is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650080.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650081.png" />. However, there exists a Jordan domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650082.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650083.png" />.
+
Then for every Jordan domain $  D $,  
 +
$  \omega $
 +
is absolutely continuous with respect to $  \Lambda _ {h _ {1}  } $,  
 +
i.e. $  \omega \ll  \Lambda _ {h _ {1}  } $.  
 +
However, there exists a Jordan domain $  D $
 +
with $  \omega \perp  \Lambda _ {h _ {2}  } $.
  
Next (B. Øksendal, Jones, Wolff): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650084.png" />, then for every domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650085.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046500/h04650087.png" />.
+
Next (B. Øksendal, Jones, Wolff): If $  1 < a \leq  2 $,  
 +
then for every domain $  D $
 +
in $  \mathbf C $,  
 +
$  \omega \perp  \Lambda _ {( t  ^  \alpha  ) } $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.B. Garnett,  "Applications of harmonic measure" , Wiley (Interscience)  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Makarov,  "On the distortion of boundary sets under conformal mappings"  ''Proc. London Math. Soc.'' , '''51'''  (1985)  pp. 369–384</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.B. Garnett,  "Applications of harmonic measure" , Wiley (Interscience)  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Makarov,  "On the distortion of boundary sets under conformal mappings"  ''Proc. London Math. Soc.'' , '''51'''  (1985)  pp. 369–384</TD></TR></table>

Latest revision as of 19:43, 5 June 2020


A concept in the theory of harmonic functions (cf. Harmonic function) connected with estimating the modulus of an analytic function inside a domain if certain bounds on the modulus on the boundary of the domain are known [1], [2]. Let $ D $ be a bounded open set in the Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; let $ \Gamma = \partial D $ be the boundary of $ D $; and let $ f $ be a finite real-valued continuous function on $ \Gamma $. To each such function $ f $ there corresponds a unique harmonic function $ H _ {f} ( x) $ on $ D $ which, for $ f $, is a generalized solution of the Dirichlet problem. If the point $ x \in D $ is assumed to be fixed, the functional $ H _ {f} ( x) $ will define on the compact set $ \Gamma $ a positive Radon measure $ \omega ( x) = \omega ( x, D) $, which is called the harmonic measure at the point $ x $. The formula for the representation of the generalized solution of the Dirichlet problem,

$$ H _ {f} ( x) = \ \int\limits f ( y) d \omega ( x; D), $$

obtained by Ch.J. de la Vallée-Poussin by the balayage method, is valid for all functions $ f $ which are continuous on $ \Gamma $. Moreover, if $ E $ is an arbitrary Borel set on $ \Gamma $, the harmonic measure $ \omega ( x; E, D) $, $ x \in D $, of $ E $ at $ x $ is equal to the value at $ x $ of the generalized solution of the Dirichlet problem for the characteristic function $ \chi _ {E} ( y) $, $ y \in \Gamma $, of $ E $.

The basic properties of a harmonic measure are: $ \omega ( x; E, D) $ is a harmonic function of the point $ x $ in $ D $;

$$ 0 \leq \omega ( x; E, D) \leq 1; $$

$$ 1 - \omega ( x; E, D) = \omega ( x; \Gamma \setminus E, D); $$

if $ D $ is a domain and $ \omega ( x; E, D) = 0 $ even at a single point $ x \in D $, then $ \omega ( x; E, D) \equiv 0 $.

In the last-named case $ E $ is known as a set of harmonic measure zero. If a compact set $ K \subset \mathbf R ^ {n} $ has harmonic measure zero with respect to some domain $ D $, $ K \subset D $, i.e. $ \omega ( x; K, D \setminus K) = 0 $, then it has harmonic measure zero with respect to all other domains, i.e. $ K $ is a set of absolute harmonic measure zero. A set $ K $ has absolute harmonic measure zero if and only if it has zero (harmonic) capacity.

As regards applications to the theory of functions of a complex variable, the dependence of a harmonic measure on the domain $ D $ is of special importance. This dependence is expressed by the principle of harmonic measure (cf. Harmonic measure, principle of), which states that a harmonic measure does not decrease under mappings of the domain $ D $ realized by univalent analytic functions $ w = w( z) $, $ z \in D $. In particular, a harmonic measure remains unchanged under a one-to-one conformal mapping.

Explicit computations of harmonic measures are possible only for the simplest domains $ D $( mainly for the disc, for the sphere, for a half-plane, and for a half-space; see Poisson integral). This is the reason for the importance of the various estimation methods for harmonic measure [4], [5], [6], [7], which are mainly based on the principle of extension of domain (cf. Extension of domain, principle of). In the simplest form, for $ n = 2 $, this principle consists in the following: Let a finitely-connected domain $ D $ be bounded by a finite number of Jordan curves $ \Gamma $ and let $ \alpha $ be an arc on $ \Gamma $. Then, if the domain $ D $ is extended in some way across the complementary part $ \Gamma \setminus \alpha $ of the boundary, the harmonic measure $ \omega ( z; \alpha , D) $ can only increase.

References

[1] T. Carleman, "Sur les fonctions inverses des fonctions entières d'ordre fini" Ark. Mat. , 15 : 10 (1921) pp. 1–7
[2] F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" Acta Soc. Sci. Fennica , 50 : 5 (1922) pp. 1–46
[3] Ch.J. de la Vallée-Poussin, Ann. Inst. H. Poincaré , 2 (1932) pp. 169–232
[4] R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)
[5] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[6] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
[7] K. Haliste, "Estimates of harmonic measure" Ark. Mat. , 6 : 1 (1965) pp. 1–31

Comments

Harmonic measure is an important tool in axiomatic potential theory (cf. Potential theory, abstract), see [a1].

For domains in $ \mathbf C $ very precise estimates for harmonic measure in terms of Hausdorff measure have been obtained recently. Let $ h( t) $ be a continuous increasing function for $ t \geq 0 $, $ h( 0)= 0 $, and let $ E $ be a Borel set. Let $ \Lambda _ {h} ( E) $ denote the Hausdorff measure with respect to $ h $ of $ E $. Let $ D $ be a domain in $ \mathbf C $ and set $ \omega ( E) = \omega ( x; E, D) $. Makarov's theorems [a3] are: 1) Suppose that $ D $ is simply connected. If $ \lim\limits _ {t \rightarrow \infty } h( t) /t = 0 $, then $ \omega $ is singular with respect to $ \Lambda _ {h} $, i.e. $ \omega \perp \Lambda _ {h} $. 2) There exist constants $ C _ {1} $, $ C _ {2} $ with the following property: Let

$$ h _ {i} ( t) = t \mathop{\rm exp} \left \{ C _ {i} \sqrt {\left ( \mathop{\rm log} \frac{1}{t} \right ) \mathop{\rm log} \mathop{\rm log} \mathop{\rm log} \frac{1}{t} } \right \} ,\ i = 1, 2. $$

Then for every Jordan domain $ D $, $ \omega $ is absolutely continuous with respect to $ \Lambda _ {h _ {1} } $, i.e. $ \omega \ll \Lambda _ {h _ {1} } $. However, there exists a Jordan domain $ D $ with $ \omega \perp \Lambda _ {h _ {2} } $.

Next (B. Øksendal, Jones, Wolff): If $ 1 < a \leq 2 $, then for every domain $ D $ in $ \mathbf C $, $ \omega \perp \Lambda _ {( t ^ \alpha ) } $.

References

[a1] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
[a2] J.B. Garnett, "Applications of harmonic measure" , Wiley (Interscience) (1986)
[a3] N. Makarov, "On the distortion of boundary sets under conformal mappings" Proc. London Math. Soc. , 51 (1985) pp. 369–384
How to Cite This Entry:
Harmonic measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_measure&oldid=11907
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article