|
|
Line 1: |
Line 1: |
− | A dual pair of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906101.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906102.png" /> is a pair of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906104.png" /> together with a non-degenerate bilinear form over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906105.png" />,
| + | <!-- |
| + | s0906101.png |
| + | $#A+1 = 49 n = 0 |
| + | $#C+1 = 49 : ~/encyclopedia/old_files/data/S090/S.0900610 Strong topology |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906106.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | I.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906108.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s0906109.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061010.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061011.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061012.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061013.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061014.png" />.
| + | A dual pair of vector spaces $ ( L, M) $ |
| + | over a field $ k $ |
| + | is a pair of vector spaces $ L $, |
| + | $ M $ |
| + | together with a non-degenerate bilinear form over $ k $, |
| | | |
− | The [[Weak topology|weak topology]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061015.png" /> defined by the dual pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061016.png" /> (given a topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061017.png" />) is the weakest topology such that all the functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061019.png" />, are continuous. More precisely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061020.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061021.png" /> with the usual topology, this defines the weak topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061022.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061023.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061024.png" /> is an arbitrary field with the discrete topology, this defines the so-called linear weak topology.
| + | $$ |
| + | \phi : L \times M \rightarrow k. |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061025.png" /> be a collection of bounded subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061026.png" /> (for the weak topology, i.e. every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061027.png" /> is weakly bounded, meaning that for every open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061029.png" /> in the weak topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061030.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061031.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061032.png" />). The topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061033.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061034.png" /> is defined by the system of semi-norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061037.png" /> (cf. [[Semi-norm|Semi-norm]]). This topology is locally convex if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061038.png" /> is a total set, i.e. it generates (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061039.png" /> as a vector space) all of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061040.png" />. The topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061041.png" /> is called the topology of uniform convergence on the sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061043.png" />.
| + | I.e. $ \phi ( a _ {1} l _ {1} + a _ {2} l _ {2} , m)= a _ {1} \phi ( l _ {1} , m)+ a _ {2} \phi ( l _ {2} , m) $, |
| + | $ \phi ( l, b _ {1} m _ {1} + b _ {2} m _ {2} ) = b _ {1} \phi ( l, m _ {1} )+ b _ {2} \phi ( l, m _ {2} ) $; |
| + | $ \phi ( l, m)= 0 $ |
| + | for all $ m \in M $ |
| + | implies $ l= 0 $; |
| + | $ \phi ( l, m)= 0 $ |
| + | for all $ l \in L $ |
| + | implies $ m= 0 $. |
| | | |
− | The finest topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061044.png" /> which can be defined in terms of the dual pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061045.png" /> is the topology of uniform convergence on weakly bounded subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061046.png" />. This is the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061047.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061048.png" /> is the collection of all weakly bounded subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061049.png" />, and it is called the strong topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090610/s09061050.png" />, for brevity. | + | The [[Weak topology|weak topology]] on $ L $ |
| + | defined by the dual pair $ ( L, M) $( |
| + | given a topology on $ k $) |
| + | is the weakest topology such that all the functionals $ \psi _ {m} : L \rightarrow k $, |
| + | $ \psi _ {m} ( l) = \phi ( l, m) $, |
| + | are continuous. More precisely, if $ k = \mathbf R $ |
| + | or $ \mathbf C $ |
| + | with the usual topology, this defines the weak topology on $ L $( |
| + | and $ M $). |
| + | If $ k $ |
| + | is an arbitrary field with the discrete topology, this defines the so-called linear weak topology. |
| + | |
| + | Let $ \mathfrak M $ |
| + | be a collection of bounded subsets of $ L $( |
| + | for the weak topology, i.e. every $ A \in \mathfrak M $ |
| + | is weakly bounded, meaning that for every open subset $ U $ |
| + | of $ 0 $ |
| + | in the weak topology on $ L $ |
| + | there is a $ \rho > 0 $ |
| + | such that $ \rho A \subset U $). |
| + | The topology $ \tau _ {\mathfrak M } $ |
| + | on $ M $ |
| + | is defined by the system of semi-norms $ \{ \rho _ {A} \} $, |
| + | $ A \in \mathfrak M $, |
| + | where $ \rho _ {A} ( x) = \sup _ {m \in A } | \phi ( m, x) | $( |
| + | cf. [[Semi-norm|Semi-norm]]). This topology is locally convex if and only if $ \cup \mathfrak M $ |
| + | is a total set, i.e. it generates (in $ L $ |
| + | as a vector space) all of $ L $. |
| + | The topology $ \tau _ {\mathfrak M } $ |
| + | is called the topology of uniform convergence on the sets of $ \mathfrak M $. |
| + | |
| + | The finest topology on $ M $ |
| + | which can be defined in terms of the dual pairs $ ( L, M) $ |
| + | is the topology of uniform convergence on weakly bounded subsets of $ L $. |
| + | This is the topology $ \tau _ {\mathfrak M } $ |
| + | where $ \mathfrak M $ |
| + | is the collection of all weakly bounded subsets of $ L $, |
| + | and it is called the strong topology on $ M $, |
| + | for brevity. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969)</TD></TR></table> |
A dual pair of vector spaces $ ( L, M) $
over a field $ k $
is a pair of vector spaces $ L $,
$ M $
together with a non-degenerate bilinear form over $ k $,
$$
\phi : L \times M \rightarrow k.
$$
I.e. $ \phi ( a _ {1} l _ {1} + a _ {2} l _ {2} , m)= a _ {1} \phi ( l _ {1} , m)+ a _ {2} \phi ( l _ {2} , m) $,
$ \phi ( l, b _ {1} m _ {1} + b _ {2} m _ {2} ) = b _ {1} \phi ( l, m _ {1} )+ b _ {2} \phi ( l, m _ {2} ) $;
$ \phi ( l, m)= 0 $
for all $ m \in M $
implies $ l= 0 $;
$ \phi ( l, m)= 0 $
for all $ l \in L $
implies $ m= 0 $.
The weak topology on $ L $
defined by the dual pair $ ( L, M) $(
given a topology on $ k $)
is the weakest topology such that all the functionals $ \psi _ {m} : L \rightarrow k $,
$ \psi _ {m} ( l) = \phi ( l, m) $,
are continuous. More precisely, if $ k = \mathbf R $
or $ \mathbf C $
with the usual topology, this defines the weak topology on $ L $(
and $ M $).
If $ k $
is an arbitrary field with the discrete topology, this defines the so-called linear weak topology.
Let $ \mathfrak M $
be a collection of bounded subsets of $ L $(
for the weak topology, i.e. every $ A \in \mathfrak M $
is weakly bounded, meaning that for every open subset $ U $
of $ 0 $
in the weak topology on $ L $
there is a $ \rho > 0 $
such that $ \rho A \subset U $).
The topology $ \tau _ {\mathfrak M } $
on $ M $
is defined by the system of semi-norms $ \{ \rho _ {A} \} $,
$ A \in \mathfrak M $,
where $ \rho _ {A} ( x) = \sup _ {m \in A } | \phi ( m, x) | $(
cf. Semi-norm). This topology is locally convex if and only if $ \cup \mathfrak M $
is a total set, i.e. it generates (in $ L $
as a vector space) all of $ L $.
The topology $ \tau _ {\mathfrak M } $
is called the topology of uniform convergence on the sets of $ \mathfrak M $.
The finest topology on $ M $
which can be defined in terms of the dual pairs $ ( L, M) $
is the topology of uniform convergence on weakly bounded subsets of $ L $.
This is the topology $ \tau _ {\mathfrak M } $
where $ \mathfrak M $
is the collection of all weakly bounded subsets of $ L $,
and it is called the strong topology on $ M $,
for brevity.
References
[a1] | G. Köthe, "Topological vector spaces" , 1 , Springer (1969) |