Difference between revisions of "Leray formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0581801.png | ||
+ | $#A+1 = 97 n = 0 | ||
+ | $#C+1 = 97 : ~/encyclopedia/old_files/data/L058/L.0508180 Leray formula, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Cauchy–Fantappié formula'' | ''Cauchy–Fantappié formula'' | ||
− | A formula for the integral representation of holomorphic functions | + | A formula for the integral representation of holomorphic functions $ f ( z) $ |
+ | of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, | ||
+ | $ n \geq 1 $, | ||
+ | which generalizes the Cauchy integral formula (see [[Cauchy integral|Cauchy integral]]). | ||
+ | |||
+ | Let $ D $ | ||
+ | be a finite domain in the complex space $ \mathbf C ^ {n} $ | ||
+ | with piecewise-smooth boundary $ \partial D $ | ||
+ | and let $ \chi ( \zeta ; z ) : \partial D \rightarrow \mathbf C ^ {n} $ | ||
+ | be a smooth vector-valued function of $ \zeta \in \partial D $ | ||
+ | with values in $ \mathbf C ^ {n} $ | ||
+ | such that the scalar product | ||
− | + | $$ | |
+ | \langle \zeta - z , \chi ( \zeta ; z ) \rangle = \sum _ {\nu = 1 } ^ { n } | ||
+ | ( \zeta _ \nu - z _ \nu ) \chi _ \nu ( \zeta ; z ) \neq 0 | ||
+ | $$ | ||
− | + | everywhere on $ \partial D $ | |
+ | for all $ z \in D $. | ||
+ | Then any function $ f ( z) $ | ||
+ | holomorphic in $ D $ | ||
+ | and continuous in the closed domain $ \overline{D}\; $ | ||
+ | can be represented in the form | ||
− | + | $$ \tag{* } | |
+ | f ( z) = | ||
+ | \frac{( n- 1 )! }{( 2 \pi i ) ^ {n} } | ||
+ | \int\limits _ {\partial D } | ||
− | + | \frac{f ( \zeta ) \delta ( \chi ( \zeta ; z )) \wedge d \zeta }{< | |
+ | \zeta - z , \chi ( \zeta ; z ) > ^ {n} } | ||
+ | ,\ z \in D . | ||
+ | $$ | ||
− | Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [[#References|[1]]]), called it the Cauchy–Fantappié formula. In this formula the differential forms | + | Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [[#References|[1]]]), called it the Cauchy–Fantappié formula. In this formula the differential forms $ \delta ( \chi ( \zeta ; z )) $ |
+ | and $ d \zeta $ | ||
+ | are constituted according to the laws: | ||
− | + | $$ | |
+ | \delta ( \chi ( \zeta ; z )) = \sum _ {\nu = 1 } ^ { n- } 1 ( - 1 ) ^ { | ||
+ | \nu - 1 } \chi _ \nu ( \zeta ; z ) d \chi _ {1} ( \zeta ; z ) \wedge \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | \dots \wedge d \chi _ {\nu - 1 } ( \zeta ; z ) \wedge d \chi _ {\nu | ||
+ | + 1 } ( \zeta ; z ) \wedge \dots \wedge d \chi _ {n} ( \zeta ; z ) | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | d \zeta = d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} , | ||
+ | $$ | ||
− | where | + | where $ \wedge $ |
+ | is the sign of exterior multiplication (see [[Exterior product|Exterior product]]). By varying the form of the function $ \chi $ | ||
+ | it is possible to obtain various integral representations from formula (*). One should bear in mind that, generally speaking, the Leray integral in (*) is not identically zero when $ z $ | ||
+ | is outside $ D $. | ||
See also [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]. | See also [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]. | ||
Line 28: | Line 78: | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Leray, "Le calcul différentielle et intégrale sur une variété analytique complexe" ''Bull. Soc. Math. France'' , '''87''' (1959) pp. 81–180</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Leray, "Le calcul différentielle et intégrale sur une variété analytique complexe" ''Bull. Soc. Math. France'' , '''87''' (1959) pp. 81–180</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | Often the Leray formula is understood to be a more general representation formula, valid for arbitrary sufficiently smooth (e.g., $ C ^ {1} $) | ||
+ | functions on a domain $ D $ | ||
+ | in $ \mathbf C ^ {n} $. | ||
+ | Let $ \chi ( \zeta , z ) $, | ||
+ | $ \delta $ | ||
+ | and $ d $ | ||
+ | be as defined above, $ \psi ( \zeta , z ) = \langle \zeta - z , \chi ( \zeta , z ) \rangle $. | ||
+ | Furthermore, define for $ z \in D $, | ||
+ | $ \zeta \in \partial D $ | ||
+ | and $ 0 \leq \lambda \leq 1 $: | ||
+ | |||
+ | $$ | ||
+ | \eta ^ \chi ( z , \zeta , \lambda ) = \ | ||
+ | ( 1 - \lambda ) | ||
+ | \frac{\chi ( \zeta , z ) }{\psi ( \zeta , z ) } | ||
+ | + \lambda | ||
+ | |||
+ | \frac{( \overline \zeta \; - \overline{z}\; ) }{\| \zeta - z \| ^ {2} } | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | Let $ L _ {\partial D } ^ \chi f ( z) $ | ||
+ | denote the right-hand side of (*). It is well defined for measurable functions $ f $ | ||
+ | on $ \partial D $. | ||
+ | Define for a continuous $ 1 $- | ||
+ | form $ u $ | ||
+ | on $ \partial D $, | ||
+ | $$ | ||
+ | R _ {\partial D } ^ \chi u ( z) = \ | ||
− | + | \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } | |
− | |||
− | + | \int\limits _ {\begin{array}{c} | |
+ | \zeta \in \partial D \\ | ||
+ | 0 \leq \lambda \leq 1 | ||
+ | \end{array} | ||
+ | } | ||
+ | u \wedge \delta _ {\zeta , \lambda } ( \eta ) \wedge d \zeta , | ||
+ | $$ | ||
− | + | $ \delta _ {\zeta , \lambda } $ | |
+ | meaning that the exterior derivative in the definition of $ \delta $ | ||
+ | has to be with respect to $ \zeta $ | ||
+ | as well as $ \lambda $. | ||
+ | Next, for $ 1 $- | ||
+ | forms $ u $ | ||
+ | defined on $ D $ | ||
+ | there holds | ||
− | + | $$ | |
+ | B _ {D} u ( z) = \ | ||
− | + | \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } | |
− | + | \int\limits _ {\zeta \in \partial D } u \wedge | |
+ | \delta _ \zeta \left ( | ||
+ | \frac{\overline \zeta \; - \overline{z}\; }{\| \zeta - z \| ^ {2} } | ||
+ | \right ) | ||
+ | \wedge d \zeta , | ||
+ | $$ | ||
the Bochner–Martinelli operator. | the Bochner–Martinelli operator. | ||
− | Now let | + | Now let $ f $ |
+ | be a continuous function on $ \overline{D}\; $ | ||
+ | such that $ \overline \partial \; f $ | ||
+ | is continuous there too. Then Leray's formula reads | ||
− | + | $$ \tag{a1 } | |
+ | f ( z) = L _ {\partial D } ^ \chi | ||
+ | f ( z) - R _ {\partial D } ^ \chi | ||
+ | \overline \partial \; f ( z) - B _ {D} \overline \partial \; f ( z) , | ||
+ | $$ | ||
− | where | + | where $ z \in D $. |
− | If | + | If $ f $ |
+ | is holomorphic on $ D $, | ||
+ | then (a1) reduces to (*). Of particular importance are instances where $ \chi $, | ||
+ | and hence also $ \psi $, | ||
+ | is holomorphic as a function of $ z $ | ||
+ | for $ \zeta $ | ||
+ | fixed — this can only occur if $ D $ | ||
+ | is pseudo-convex; $ \psi $ | ||
+ | is then a holomorphic support function (i.e. for all $ p \in \partial D $ | ||
+ | there is a neighbourhood $ U _ {p} $ | ||
+ | of $ p $ | ||
+ | such that $ \psi $ | ||
+ | is holomorphic in this neighbourhood and $ \{ {z \in U _ {p} } : {\psi ( z ) = 0 } \} \cap \overline{D}\; = \{ p \} $), | ||
+ | the existence of which is closely related to the existence of continuously varying holomorphic peaking functions. (A continuously varying holomorphic peaking function for $ D $ | ||
+ | is a function $ P : \overline{D}\; \times \partial D \rightarrow \mathbf C $ | ||
+ | such that for each fixed $ p \in \partial D $: | ||
+ | 1) $ P ( \cdot , p ) $ | ||
+ | is holomorphic on $ D $ | ||
+ | and continuous on $ \overline{D}\; $; | ||
+ | and 2) $ P ( p , p ) = 1 $ | ||
+ | and $ | P ( z , p ) | < 1 $ | ||
+ | for all $ z \in \overline{D}\; \setminus \{ p \} $. | ||
+ | If $ \partial D \in C ^ {k+} 3 $, | ||
+ | $ P ( z , \cdot ) $ | ||
+ | is required to be $ C ^ {k} $ | ||
+ | for each fixed $ z \in D $.) | ||
+ | Then $ L _ {\partial D } ^ \chi f $ | ||
+ | is holomorphic for every continuous $ f $ | ||
+ | on $ \partial D $ | ||
+ | and the operator | ||
− | + | $$ | |
+ | u \mapsto f = - ( R _ {\partial D } ^ \chi u + B _ {D} u ) | ||
+ | $$ | ||
solves the inhomogeneous Cauchy–Riemann equations | solves the inhomogeneous Cauchy–Riemann equations | ||
− | + | $$ \tag{a2 } | |
+ | \left . | ||
+ | \begin{array}{c} | ||
+ | \overline \partial \; f = u \\ | ||
+ | \textrm{ with integrability condition } \overline \partial \; u = 0 \\ | ||
+ | \end{array} | ||
+ | \right \} | ||
+ | $$ | ||
− | for continuous | + | for continuous $ ( 0 , 1 ) $- |
+ | forms $ u $ | ||
+ | on $ \overline{D}\; $. | ||
+ | Formula (a1) can be generalized to give a representation formula for $ ( p , q ) $- | ||
+ | forms as well (see [[#References|[a2]]]). | ||
− | Thus, the Leray formula has become an important tool for solving the [[Levi problem|Levi problem]] (work of G.M. Khenkin [[#References|[a1]]] and of E. Ramirez de Arellano [[#References|[a3]]]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution | + | Thus, the Leray formula has become an important tool for solving the [[Levi problem|Levi problem]] (work of G.M. Khenkin [[#References|[a1]]] and of E. Ramirez de Arellano [[#References|[a3]]]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution $ f $ |
+ | with $ \| f \| _ {1/2} \leq C \| u \| _ \infty $, | ||
+ | where $ C $ | ||
+ | depends on the domain only, $ \| \cdot \| _ {1/2} $ | ||
+ | denotes the Hölder $ 1/2 $- | ||
+ | norm and $ \| \cdot \| _ \infty $ | ||
+ | denotes the sup-norm. Many analysts made contributions in this direction, notably Khenkin and A.V. Romanov; H. Grauert and I. Lieb; and N. Kerzman and R.M. Range. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications" ''Math. USSR Sb.'' , '''78''' (1969) pp. 611–632 ''Mat. Sb.'' , '''7''' (1969) pp. 597–616</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Ramirez de Arellano, "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis" ''Math. Ann.'' , '''184''' (1970) pp. 172–187</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. VI, Par. 6</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications" ''Math. USSR Sb.'' , '''78''' (1969) pp. 611–632 ''Mat. Sb.'' , '''7''' (1969) pp. 597–616</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Ramirez de Arellano, "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis" ''Math. Ann.'' , '''184''' (1970) pp. 172–187</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. VI, Par. 6</TD></TR></table> |
Revision as of 22:16, 5 June 2020
Cauchy–Fantappié formula
A formula for the integral representation of holomorphic functions $ f ( z) $ of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n \geq 1 $, which generalizes the Cauchy integral formula (see Cauchy integral).
Let $ D $ be a finite domain in the complex space $ \mathbf C ^ {n} $ with piecewise-smooth boundary $ \partial D $ and let $ \chi ( \zeta ; z ) : \partial D \rightarrow \mathbf C ^ {n} $ be a smooth vector-valued function of $ \zeta \in \partial D $ with values in $ \mathbf C ^ {n} $ such that the scalar product
$$ \langle \zeta - z , \chi ( \zeta ; z ) \rangle = \sum _ {\nu = 1 } ^ { n } ( \zeta _ \nu - z _ \nu ) \chi _ \nu ( \zeta ; z ) \neq 0 $$
everywhere on $ \partial D $ for all $ z \in D $. Then any function $ f ( z) $ holomorphic in $ D $ and continuous in the closed domain $ \overline{D}\; $ can be represented in the form
$$ \tag{* } f ( z) = \frac{( n- 1 )! }{( 2 \pi i ) ^ {n} } \int\limits _ {\partial D } \frac{f ( \zeta ) \delta ( \chi ( \zeta ; z )) \wedge d \zeta }{< \zeta - z , \chi ( \zeta ; z ) > ^ {n} } ,\ z \in D . $$
Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [1]), called it the Cauchy–Fantappié formula. In this formula the differential forms $ \delta ( \chi ( \zeta ; z )) $ and $ d \zeta $ are constituted according to the laws:
$$ \delta ( \chi ( \zeta ; z )) = \sum _ {\nu = 1 } ^ { n- } 1 ( - 1 ) ^ { \nu - 1 } \chi _ \nu ( \zeta ; z ) d \chi _ {1} ( \zeta ; z ) \wedge \dots $$
$$ \dots \wedge d \chi _ {\nu - 1 } ( \zeta ; z ) \wedge d \chi _ {\nu + 1 } ( \zeta ; z ) \wedge \dots \wedge d \chi _ {n} ( \zeta ; z ) $$
and
$$ d \zeta = d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} , $$
where $ \wedge $ is the sign of exterior multiplication (see Exterior product). By varying the form of the function $ \chi $ it is possible to obtain various integral representations from formula (*). One should bear in mind that, generally speaking, the Leray integral in (*) is not identically zero when $ z $ is outside $ D $.
See also Bochner–Martinelli representation formula.
References
[1] | J. Leray, "Le calcul différentielle et intégrale sur une variété analytique complexe" Bull. Soc. Math. France , 87 (1959) pp. 81–180 |
[2] | B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) |
Comments
Often the Leray formula is understood to be a more general representation formula, valid for arbitrary sufficiently smooth (e.g., $ C ^ {1} $) functions on a domain $ D $ in $ \mathbf C ^ {n} $. Let $ \chi ( \zeta , z ) $, $ \delta $ and $ d $ be as defined above, $ \psi ( \zeta , z ) = \langle \zeta - z , \chi ( \zeta , z ) \rangle $. Furthermore, define for $ z \in D $, $ \zeta \in \partial D $ and $ 0 \leq \lambda \leq 1 $:
$$ \eta ^ \chi ( z , \zeta , \lambda ) = \ ( 1 - \lambda ) \frac{\chi ( \zeta , z ) }{\psi ( \zeta , z ) } + \lambda \frac{( \overline \zeta \; - \overline{z}\; ) }{\| \zeta - z \| ^ {2} } . $$
Let $ L _ {\partial D } ^ \chi f ( z) $ denote the right-hand side of (*). It is well defined for measurable functions $ f $ on $ \partial D $. Define for a continuous $ 1 $- form $ u $ on $ \partial D $,
$$ R _ {\partial D } ^ \chi u ( z) = \ \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } \int\limits _ {\begin{array}{c} \zeta \in \partial D \\ 0 \leq \lambda \leq 1 \end{array} } u \wedge \delta _ {\zeta , \lambda } ( \eta ) \wedge d \zeta , $$
$ \delta _ {\zeta , \lambda } $ meaning that the exterior derivative in the definition of $ \delta $ has to be with respect to $ \zeta $ as well as $ \lambda $. Next, for $ 1 $- forms $ u $ defined on $ D $ there holds
$$ B _ {D} u ( z) = \ \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } \int\limits _ {\zeta \in \partial D } u \wedge \delta _ \zeta \left ( \frac{\overline \zeta \; - \overline{z}\; }{\| \zeta - z \| ^ {2} } \right ) \wedge d \zeta , $$
the Bochner–Martinelli operator.
Now let $ f $ be a continuous function on $ \overline{D}\; $ such that $ \overline \partial \; f $ is continuous there too. Then Leray's formula reads
$$ \tag{a1 } f ( z) = L _ {\partial D } ^ \chi f ( z) - R _ {\partial D } ^ \chi \overline \partial \; f ( z) - B _ {D} \overline \partial \; f ( z) , $$
where $ z \in D $.
If $ f $ is holomorphic on $ D $, then (a1) reduces to (*). Of particular importance are instances where $ \chi $, and hence also $ \psi $, is holomorphic as a function of $ z $ for $ \zeta $ fixed — this can only occur if $ D $ is pseudo-convex; $ \psi $ is then a holomorphic support function (i.e. for all $ p \in \partial D $ there is a neighbourhood $ U _ {p} $ of $ p $ such that $ \psi $ is holomorphic in this neighbourhood and $ \{ {z \in U _ {p} } : {\psi ( z ) = 0 } \} \cap \overline{D}\; = \{ p \} $), the existence of which is closely related to the existence of continuously varying holomorphic peaking functions. (A continuously varying holomorphic peaking function for $ D $ is a function $ P : \overline{D}\; \times \partial D \rightarrow \mathbf C $ such that for each fixed $ p \in \partial D $: 1) $ P ( \cdot , p ) $ is holomorphic on $ D $ and continuous on $ \overline{D}\; $; and 2) $ P ( p , p ) = 1 $ and $ | P ( z , p ) | < 1 $ for all $ z \in \overline{D}\; \setminus \{ p \} $. If $ \partial D \in C ^ {k+} 3 $, $ P ( z , \cdot ) $ is required to be $ C ^ {k} $ for each fixed $ z \in D $.) Then $ L _ {\partial D } ^ \chi f $ is holomorphic for every continuous $ f $ on $ \partial D $ and the operator
$$ u \mapsto f = - ( R _ {\partial D } ^ \chi u + B _ {D} u ) $$
solves the inhomogeneous Cauchy–Riemann equations
$$ \tag{a2 } \left . \begin{array}{c} \overline \partial \; f = u \\ \textrm{ with integrability condition } \overline \partial \; u = 0 \\ \end{array} \right \} $$
for continuous $ ( 0 , 1 ) $- forms $ u $ on $ \overline{D}\; $. Formula (a1) can be generalized to give a representation formula for $ ( p , q ) $- forms as well (see [a2]).
Thus, the Leray formula has become an important tool for solving the Levi problem (work of G.M. Khenkin [a1] and of E. Ramirez de Arellano [a3]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution $ f $ with $ \| f \| _ {1/2} \leq C \| u \| _ \infty $, where $ C $ depends on the domain only, $ \| \cdot \| _ {1/2} $ denotes the Hölder $ 1/2 $- norm and $ \| \cdot \| _ \infty $ denotes the sup-norm. Many analysts made contributions in this direction, notably Khenkin and A.V. Romanov; H. Grauert and I. Lieb; and N. Kerzman and R.M. Range.
References
[a1] | G.M. [G.M. Khenkin] Henkin, "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications" Math. USSR Sb. , 78 (1969) pp. 611–632 Mat. Sb. , 7 (1969) pp. 597–616 |
[a2] | J.L. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984) |
[a3] | E. Ramirez de Arellano, "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis" Math. Ann. , 184 (1970) pp. 172–187 |
[a4] | R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. VI, Par. 6 |
Leray formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leray_formula&oldid=11615