Difference between revisions of "Leray formula"
|  (Importing text file) | Ulf Rehmann (talk | contribs)  m (tex encoded by computer) | ||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | l0581801.png | ||
| + | $#A+1 = 97 n = 0 | ||
| + | $#C+1 = 97 : ~/encyclopedia/old_files/data/L058/L.0508180 Leray formula, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
| ''Cauchy–Fantappié formula'' | ''Cauchy–Fantappié formula'' | ||
| − | A formula for the integral representation of holomorphic functions  | + | A formula for the integral representation of holomorphic functions  $  f ( z) $ | 
| + | of several complex variables  $  z = ( z _ {1} \dots z _ {n} ) $,   | ||
| + | $  n \geq  1 $,   | ||
| + | which generalizes the Cauchy integral formula (see [[Cauchy integral|Cauchy integral]]). | ||
| + | |||
| + | Let  $  D $ | ||
| + | be a finite domain in the complex space  $  \mathbf C  ^ {n} $ | ||
| + | with piecewise-smooth boundary  $  \partial  D $ | ||
| + | and let  $  \chi ( \zeta ;  z ) :  \partial  D \rightarrow \mathbf C  ^ {n} $ | ||
| + | be a smooth vector-valued function of  $  \zeta \in \partial  D $ | ||
| + | with values in  $  \mathbf C  ^ {n} $ | ||
| + | such that the scalar product | ||
| − | + | $$  | |
| + | \langle  \zeta - z , \chi ( \zeta ;  z ) \rangle  =  \sum _ {\nu = 1 } ^ { n }  | ||
| + | ( \zeta _  \nu  - z _  \nu  ) \chi _  \nu  ( \zeta ;  z )  \neq  0 | ||
| + | $$ | ||
| − | + | everywhere on  $  \partial  D $ | |
| + | for all  $  z \in D $.  | ||
| + | Then any function  $  f ( z) $ | ||
| + | holomorphic in  $  D $ | ||
| + | and continuous in the closed domain  $  \overline{D}\; $ | ||
| + | can be represented in the form | ||
| − | + | $$ \tag{* } | |
| + | f ( z)  =   | ||
| + | \frac{( n- 1 )! }{( 2 \pi i )  ^ {n} } | ||
| + |  \int\limits _ {\partial  D } | ||
| − | + | \frac{f ( \zeta ) \delta ( \chi ( \zeta ;  z )) \wedge d \zeta }{< | |
| + | \zeta - z , \chi ( \zeta ;  z ) >  ^ {n} } | ||
| + |  ,\  z \in D . | ||
| + | $$ | ||
| − | Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [[#References|[1]]]), called it the Cauchy–Fantappié formula. In this formula the differential forms  | + | Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [[#References|[1]]]), called it the Cauchy–Fantappié formula. In this formula the differential forms  $  \delta ( \chi ( \zeta ;  z )) $ | 
| + | and  $  d \zeta $ | ||
| + | are constituted according to the laws: | ||
| − | + | $$  | |
| + | \delta ( \chi ( \zeta ;  z ))  =  \sum _ {\nu = 1 } ^ { n- }  1 ( - 1 ) ^ { | ||
| + | \nu - 1 } \chi _  \nu  ( \zeta ;  z )  d \chi _ {1} ( \zeta ;  z ) \wedge \dots | ||
| + | $$ | ||
| − | + | $$  | |
| + | \dots \wedge d \chi _ {\nu - 1 }  ( \zeta ;  z ) \wedge d \chi _ {\nu | ||
| + | + 1 }  ( \zeta ;  z ) \wedge \dots \wedge d \chi _ {n} ( \zeta ;  z ) | ||
| + | $$ | ||
| and | and | ||
| − | + | $$  | |
| + | d \zeta  =  d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} , | ||
| + | $$ | ||
| − | where  | + | where  $  \wedge $ | 
| + | is the sign of exterior multiplication (see [[Exterior product|Exterior product]]). By varying the form of the function  $  \chi $ | ||
| + | it is possible to obtain various integral representations from formula (*). One should bear in mind that, generally speaking, the Leray integral in (*) is not identically zero when  $  z $ | ||
| + | is outside  $  D $. | ||
| See also [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]. | See also [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]. | ||
| Line 28: | Line 78: | ||
| <table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Leray,   "Le calcul différentielle et intégrale sur une variété analytique complexe"  ''Bull. Soc. Math. France'' , '''87'''  (1959)  pp. 81–180</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,   "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Leray,   "Le calcul différentielle et intégrale sur une variété analytique complexe"  ''Bull. Soc. Math. France'' , '''87'''  (1959)  pp. 81–180</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,   "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR></table> | ||
| + | ====Comments==== | ||
| + | Often the Leray formula is understood to be a more general representation formula, valid for arbitrary sufficiently smooth (e.g.,  $  C  ^ {1} $)  | ||
| + | functions on a domain  $  D $ | ||
| + | in  $  \mathbf C  ^ {n} $.  | ||
| + | Let  $  \chi ( \zeta , z ) $,  | ||
| + | $  \delta $ | ||
| + | and  $  d $ | ||
| + | be as defined above,  $  \psi ( \zeta , z ) = \langle  \zeta - z , \chi ( \zeta , z ) \rangle $.  | ||
| + | Furthermore, define for  $  z \in D $,  | ||
| + | $  \zeta \in \partial  D $ | ||
| + | and  $  0 \leq  \lambda \leq  1 $: | ||
| + | |||
| + | $$  | ||
| + | \eta  ^  \chi  ( z , \zeta , \lambda )  = \  | ||
| + | ( 1 - \lambda )  | ||
| + | \frac{\chi ( \zeta , z ) }{\psi ( \zeta , z ) } | ||
| + |  + \lambda | ||
| + | |||
| + | \frac{( \overline \zeta \; - \overline{z}\; ) }{\| \zeta - z \|  ^ {2} } | ||
| + |  . | ||
| + | $$ | ||
| + | |||
| + | Let  $  L _ {\partial  D }   ^  \chi  f ( z) $ | ||
| + | denote the right-hand side of (*). It is well defined for measurable functions  $  f $ | ||
| + | on  $  \partial  D $.  | ||
| + | Define for a continuous  $  1 $- | ||
| + | form  $  u $ | ||
| + | on  $  \partial  D $, | ||
| + | $$  | ||
| + | R _ {\partial  D }   ^  \chi  u ( z)  = \  | ||
| − | + | \frac{( n - 1 ) ! }{( 2 \pi i )  ^ {n} } | |
| − | |||
| − | + | \int\limits _ {\begin{array}{c} | |
| + | \zeta \in \partial  D \\ | ||
| + |  0 \leq  \lambda \leq  1  | ||
| + | \end{array} | ||
| + |  } | ||
| + | u \wedge \delta _ {\zeta , \lambda }  ( \eta ) \wedge d \zeta , | ||
| + | $$ | ||
| − | + | $  \delta _ {\zeta , \lambda }  $ | |
| + | meaning that the exterior derivative in the definition of  $  \delta $ | ||
| + | has to be with respect to  $  \zeta $ | ||
| + | as well as  $  \lambda $.   | ||
| + | Next, for  $  1 $- | ||
| + | forms  $  u $ | ||
| + | defined on  $  D $ | ||
| + | there holds | ||
| − | + | $$  | |
| + | B _ {D} u ( z)  = \  | ||
| − | + | \frac{( n - 1 ) ! }{( 2 \pi i )  ^ {n} } | |
| − | + | \int\limits _ {\zeta \in \partial  D } u \wedge | |
| + | \delta _  \zeta  \left (  | ||
| + | \frac{\overline \zeta \; - \overline{z}\; }{\| \zeta - z \|  ^ {2} } | ||
| + |  \right ) | ||
| + | \wedge d \zeta , | ||
| + | $$ | ||
| the Bochner–Martinelli operator. | the Bochner–Martinelli operator. | ||
| − | Now let  | + | Now let  $  f $ | 
| + | be a continuous function on  $  \overline{D}\; $ | ||
| + | such that  $  \overline \partial \; f $ | ||
| + | is continuous there too. Then Leray's formula reads | ||
| − | + | $$ \tag{a1 } | |
| + | f ( z)  =  L _ {\partial  D }   ^  \chi  | ||
| + | f ( z) - R _ {\partial  D }   ^  \chi  | ||
| + | \overline \partial \; f ( z) - B _ {D} \overline \partial \; f ( z) , | ||
| + | $$ | ||
| − | where  | + | where  $  z \in D $. | 
| − | If  | + | If  $  f $ | 
| + | is holomorphic on  $  D $,   | ||
| + | then (a1) reduces to (*). Of particular importance are instances where  $  \chi $,   | ||
| + | and hence also  $  \psi $,   | ||
| + | is holomorphic as a function of  $  z $ | ||
| + | for  $  \zeta $ | ||
| + | fixed — this can only occur if  $  D $ | ||
| + | is pseudo-convex;  $  \psi $ | ||
| + | is then a holomorphic support function (i.e. for all  $  p \in \partial  D $ | ||
| + | there is a neighbourhood  $  U _ {p} $ | ||
| + | of  $  p $ | ||
| + | such that  $  \psi $ | ||
| + | is holomorphic in this neighbourhood and  $  \{ {z \in U _ {p} } : {\psi ( z ) = 0 } \} \cap \overline{D}\; = \{ p \} $),   | ||
| + | the existence of which is closely related to the existence of continuously varying holomorphic peaking functions. (A continuously varying holomorphic peaking function for  $  D $ | ||
| + | is a function  $  P :  \overline{D}\; \times \partial  D \rightarrow \mathbf C $ | ||
| + | such that for each fixed  $  p \in \partial  D $:   | ||
| + | 1)  $  P ( \cdot , p ) $ | ||
| + | is holomorphic on  $  D $ | ||
| + | and continuous on  $  \overline{D}\; $;   | ||
| + | and 2)  $  P ( p , p ) = 1 $ | ||
| + | and  $  | P ( z , p ) | < 1 $ | ||
| + | for all  $  z \in \overline{D}\; \setminus  \{ p \} $.   | ||
| + | If  $  \partial  D \in C  ^ {k+} 3 $,  | ||
| + | $  P ( z , \cdot ) $ | ||
| + | is required to be  $  C  ^ {k} $ | ||
| + | for each fixed  $  z \in D $.)   | ||
| + | Then  $  L _ {\partial  D }   ^  \chi  f $ | ||
| + | is holomorphic for every continuous  $  f $ | ||
| + | on  $  \partial  D $ | ||
| + | and the operator | ||
| − | + | $$  | |
| + | u  \mapsto  f  =  - ( R _ {\partial  D }   ^  \chi  u + B _ {D} u ) | ||
| + | $$ | ||
| solves the inhomogeneous Cauchy–Riemann equations | solves the inhomogeneous Cauchy–Riemann equations | ||
| − | + | $$ \tag{a2 } | |
| + | \left .  | ||
| + | \begin{array}{c} | ||
| + | \overline \partial \; f  =  u  \\ | ||
| + | \textrm{ with  integrability  condition  }  \overline \partial \; u  =  0  \\ | ||
| + | \end{array} | ||
| + |  \right \} | ||
| + | $$ | ||
| − | for continuous  | + | for continuous  $  ( 0 , 1 ) $- | 
| + | forms  $  u $ | ||
| + | on  $  \overline{D}\; $.   | ||
| + | Formula (a1) can be generalized to give a representation formula for  $  ( p , q ) $- | ||
| + | forms as well (see [[#References|[a2]]]). | ||
| − | Thus, the Leray formula has become an important tool for solving the [[Levi problem|Levi problem]] (work of G.M. Khenkin [[#References|[a1]]] and of E. Ramirez de Arellano [[#References|[a3]]]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution  | + | Thus, the Leray formula has become an important tool for solving the [[Levi problem|Levi problem]] (work of G.M. Khenkin [[#References|[a1]]] and of E. Ramirez de Arellano [[#References|[a3]]]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution  $  f $ | 
| + | with  $  \| f \| _ {1/2} \leq  C  \| u \| _  \infty  $,   | ||
| + | where  $  C $ | ||
| + | depends on the domain only,  $  \| \cdot \| _ {1/2} $ | ||
| + | denotes the Hölder  $  1/2 $- | ||
| + | norm and  $  \| \cdot \| _  \infty  $ | ||
| + | denotes the sup-norm. Many analysts made contributions in this direction, notably Khenkin and A.V. Romanov; H. Grauert and I. Lieb; and N. Kerzman and R.M. Range. | ||
| ====References==== | ====References==== | ||
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.M. [G.M. Khenkin] Henkin,   "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications"  ''Math. USSR Sb.'' , '''78'''  (1969)  pp. 611–632  ''Mat. Sb.'' , '''7'''  (1969)  pp. 597–616</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.L. Leiterer,   "Theory of functions on complex manifolds" , Birkhäuser  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Ramirez de Arellano,   "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis"  ''Math. Ann.'' , '''184'''  (1970)  pp. 172–187</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Range,   "Holomorphic functions and integral representation in several complex variables" , Springer  (1986)  pp. Chapt. VI, Par. 6</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.M. [G.M. Khenkin] Henkin,   "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications"  ''Math. USSR Sb.'' , '''78'''  (1969)  pp. 611–632  ''Mat. Sb.'' , '''7'''  (1969)  pp. 597–616</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.L. Leiterer,   "Theory of functions on complex manifolds" , Birkhäuser  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Ramirez de Arellano,   "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis"  ''Math. Ann.'' , '''184'''  (1970)  pp. 172–187</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Range,   "Holomorphic functions and integral representation in several complex variables" , Springer  (1986)  pp. Chapt. VI, Par. 6</TD></TR></table> | ||
Revision as of 22:16, 5 June 2020
Cauchy–Fantappié formula
A formula for the integral representation of holomorphic functions $ f ( z) $ of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n \geq 1 $, which generalizes the Cauchy integral formula (see Cauchy integral).
Let $ D $ be a finite domain in the complex space $ \mathbf C ^ {n} $ with piecewise-smooth boundary $ \partial D $ and let $ \chi ( \zeta ; z ) : \partial D \rightarrow \mathbf C ^ {n} $ be a smooth vector-valued function of $ \zeta \in \partial D $ with values in $ \mathbf C ^ {n} $ such that the scalar product
$$ \langle \zeta - z , \chi ( \zeta ; z ) \rangle = \sum _ {\nu = 1 } ^ { n } ( \zeta _ \nu - z _ \nu ) \chi _ \nu ( \zeta ; z ) \neq 0 $$
everywhere on $ \partial D $ for all $ z \in D $. Then any function $ f ( z) $ holomorphic in $ D $ and continuous in the closed domain $ \overline{D}\; $ can be represented in the form
$$ \tag{* } f ( z) = \frac{( n- 1 )! }{( 2 \pi i ) ^ {n} } \int\limits _ {\partial D } \frac{f ( \zeta ) \delta ( \chi ( \zeta ; z )) \wedge d \zeta }{< \zeta - z , \chi ( \zeta ; z ) > ^ {n} } ,\ z \in D . $$
Formula (*) generalizes Cauchy's classical integral formula for analytic functions of one complex variable and is called the Leray formula. J. Leray, who obtained this formula (see [1]), called it the Cauchy–Fantappié formula. In this formula the differential forms $ \delta ( \chi ( \zeta ; z )) $ and $ d \zeta $ are constituted according to the laws:
$$ \delta ( \chi ( \zeta ; z )) = \sum _ {\nu = 1 } ^ { n- } 1 ( - 1 ) ^ { \nu - 1 } \chi _ \nu ( \zeta ; z ) d \chi _ {1} ( \zeta ; z ) \wedge \dots $$
$$ \dots \wedge d \chi _ {\nu - 1 } ( \zeta ; z ) \wedge d \chi _ {\nu + 1 } ( \zeta ; z ) \wedge \dots \wedge d \chi _ {n} ( \zeta ; z ) $$
and
$$ d \zeta = d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} , $$
where $ \wedge $ is the sign of exterior multiplication (see Exterior product). By varying the form of the function $ \chi $ it is possible to obtain various integral representations from formula (*). One should bear in mind that, generally speaking, the Leray integral in (*) is not identically zero when $ z $ is outside $ D $.
See also Bochner–Martinelli representation formula.
References
| [1] | J. Leray, "Le calcul différentielle et intégrale sur une variété analytique complexe" Bull. Soc. Math. France , 87 (1959) pp. 81–180 | 
| [2] | B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) | 
Comments
Often the Leray formula is understood to be a more general representation formula, valid for arbitrary sufficiently smooth (e.g., $ C ^ {1} $) functions on a domain $ D $ in $ \mathbf C ^ {n} $. Let $ \chi ( \zeta , z ) $, $ \delta $ and $ d $ be as defined above, $ \psi ( \zeta , z ) = \langle \zeta - z , \chi ( \zeta , z ) \rangle $. Furthermore, define for $ z \in D $, $ \zeta \in \partial D $ and $ 0 \leq \lambda \leq 1 $:
$$ \eta ^ \chi ( z , \zeta , \lambda ) = \ ( 1 - \lambda ) \frac{\chi ( \zeta , z ) }{\psi ( \zeta , z ) } + \lambda \frac{( \overline \zeta \; - \overline{z}\; ) }{\| \zeta - z \| ^ {2} } . $$
Let $ L _ {\partial D } ^ \chi f ( z) $ denote the right-hand side of (*). It is well defined for measurable functions $ f $ on $ \partial D $. Define for a continuous $ 1 $- form $ u $ on $ \partial D $,
$$ R _ {\partial D } ^ \chi u ( z) = \ \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } \int\limits _ {\begin{array}{c} \zeta \in \partial D \\ 0 \leq \lambda \leq 1 \end{array} } u \wedge \delta _ {\zeta , \lambda } ( \eta ) \wedge d \zeta , $$
$ \delta _ {\zeta , \lambda } $ meaning that the exterior derivative in the definition of $ \delta $ has to be with respect to $ \zeta $ as well as $ \lambda $. Next, for $ 1 $- forms $ u $ defined on $ D $ there holds
$$ B _ {D} u ( z) = \ \frac{( n - 1 ) ! }{( 2 \pi i ) ^ {n} } \int\limits _ {\zeta \in \partial D } u \wedge \delta _ \zeta \left ( \frac{\overline \zeta \; - \overline{z}\; }{\| \zeta - z \| ^ {2} } \right ) \wedge d \zeta , $$
the Bochner–Martinelli operator.
Now let $ f $ be a continuous function on $ \overline{D}\; $ such that $ \overline \partial \; f $ is continuous there too. Then Leray's formula reads
$$ \tag{a1 } f ( z) = L _ {\partial D } ^ \chi f ( z) - R _ {\partial D } ^ \chi \overline \partial \; f ( z) - B _ {D} \overline \partial \; f ( z) , $$
where $ z \in D $.
If $ f $ is holomorphic on $ D $, then (a1) reduces to (*). Of particular importance are instances where $ \chi $, and hence also $ \psi $, is holomorphic as a function of $ z $ for $ \zeta $ fixed — this can only occur if $ D $ is pseudo-convex; $ \psi $ is then a holomorphic support function (i.e. for all $ p \in \partial D $ there is a neighbourhood $ U _ {p} $ of $ p $ such that $ \psi $ is holomorphic in this neighbourhood and $ \{ {z \in U _ {p} } : {\psi ( z ) = 0 } \} \cap \overline{D}\; = \{ p \} $), the existence of which is closely related to the existence of continuously varying holomorphic peaking functions. (A continuously varying holomorphic peaking function for $ D $ is a function $ P : \overline{D}\; \times \partial D \rightarrow \mathbf C $ such that for each fixed $ p \in \partial D $: 1) $ P ( \cdot , p ) $ is holomorphic on $ D $ and continuous on $ \overline{D}\; $; and 2) $ P ( p , p ) = 1 $ and $ | P ( z , p ) | < 1 $ for all $ z \in \overline{D}\; \setminus \{ p \} $. If $ \partial D \in C ^ {k+} 3 $, $ P ( z , \cdot ) $ is required to be $ C ^ {k} $ for each fixed $ z \in D $.) Then $ L _ {\partial D } ^ \chi f $ is holomorphic for every continuous $ f $ on $ \partial D $ and the operator
$$ u \mapsto f = - ( R _ {\partial D } ^ \chi u + B _ {D} u ) $$
solves the inhomogeneous Cauchy–Riemann equations
$$ \tag{a2 } \left . \begin{array}{c} \overline \partial \; f = u \\ \textrm{ with integrability condition } \overline \partial \; u = 0 \\ \end{array} \right \} $$
for continuous $ ( 0 , 1 ) $- forms $ u $ on $ \overline{D}\; $. Formula (a1) can be generalized to give a representation formula for $ ( p , q ) $- forms as well (see [a2]).
Thus, the Leray formula has become an important tool for solving the Levi problem (work of G.M. Khenkin [a1] and of E. Ramirez de Arellano [a3]) and for obtaining estimates for solutions of (a2). In particular, the following sharp Hölder estimates hold on strictly pseudo-convex domains: There is a solution $ f $ with $ \| f \| _ {1/2} \leq C \| u \| _ \infty $, where $ C $ depends on the domain only, $ \| \cdot \| _ {1/2} $ denotes the Hölder $ 1/2 $- norm and $ \| \cdot \| _ \infty $ denotes the sup-norm. Many analysts made contributions in this direction, notably Khenkin and A.V. Romanov; H. Grauert and I. Lieb; and N. Kerzman and R.M. Range.
References
| [a1] | G.M. [G.M. Khenkin] Henkin, "Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications" Math. USSR Sb. , 78 (1969) pp. 611–632 Mat. Sb. , 7 (1969) pp. 597–616 | 
| [a2] | J.L. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984) | 
| [a3] | E. Ramirez de Arellano, "Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis" Math. Ann. , 184 (1970) pp. 172–187 | 
| [a4] | R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. VI, Par. 6 | 
Leray formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leray_formula&oldid=11615