Namespaces
Variants
Actions

Difference between revisions of "Rotor(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 17 formulas out of 17 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 17 formulas, 17 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
==Rotor in graph theory.==
 
==Rotor in graph theory.==
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301702.png" />-rotor of a [[Graph|graph]] is the part of the graph that is invariant under the action of the [[Cyclic group|cyclic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301703.png" />; [[#References|[a7]]], [[#References|[a8]]].
+
The $n$-rotor of a [[Graph|graph]] is the part of the graph that is invariant under the action of the [[Cyclic group|cyclic group]] $Z_n$; [[#References|[a7]]], [[#References|[a8]]].
  
 
==Rotor in knot theory.==
 
==Rotor in knot theory.==
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301705.png" />-rotor of a link diagram (cf. [[Knot and link diagrams|Knot and link diagrams]]) is the part of the link diagram that is invariant under rotation by an angle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301706.png" />.
+
The $n$-rotor of a link diagram (cf. [[Knot and link diagrams|Knot and link diagrams]]) is the part of the link diagram that is invariant under rotation by an angle of $2 \pi / n$.
  
If one modifies the rotor part of a link diagram by rotation of the rotor along an axis of symmetry of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301707.png" />-gon in which the rotor is placed, one obtains a rotant of the original diagram. A link diagram and its rotant share, in some cases, polynomial invariants of links: the Jones polynomial for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301708.png" />, the [[Jones–Conway polynomial|Jones–Conway polynomial]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r1301709.png" /> and the [[Kauffman bracket polynomial|Kauffman bracket polynomial]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017010.png" />. Also, the problem for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017012.png" /> a link and its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017013.png" />-rotant share the same space of Fox <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017014.png" />-colourings (cf. [[Fox-n-colouring|Fox <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017015.png" />-colouring]]) has been solved for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017016.png" /> not divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017017.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017018.png" />.
+
If one modifies the rotor part of a link diagram by rotation of the rotor along an axis of symmetry of an $n$-gon in which the rotor is placed, one obtains a rotant of the original diagram. A link diagram and its rotant share, in some cases, polynomial invariants of links: the Jones polynomial for $n \leq 5$, the [[Jones–Conway polynomial|Jones–Conway polynomial]] for $n \leq 4$ and the [[Kauffman bracket polynomial|Kauffman bracket polynomial]] for $n \leq 3$. Also, the problem for which $n$ and $p$ a link and its $n$-rotant share the same space of Fox $p$-colourings (cf. [[Fox-n-colouring|Fox $n$-colouring]]) has been solved for $n$ not divisible by $p$, or $n = p$.
  
Rotors can be thought of as generalizing the notion of mutation [[#References|[a1]]]. It is an open problem (as of 2000) whether the Alexander polynomial is preserved under rotation for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130170/r13017019.png" />, [[#References|[a3]]]. P. Traczyk has announced (in March 2001) the affirmative answer to the problem. There is a relation of rotors with statistical mechanics (cf. also [[Statistical mechanics, mathematical problems in|Statistical mechanics, mathematical problems in]]), where a tangle plays the role of spectral parameter in the [[Yang–Baxter equation|Yang–Baxter equation]], [[#References|[a4]]], [[#References|[a2]]], [[#References|[a5]]], [[#References|[a6]]].
+
Rotors can be thought of as generalizing the notion of mutation [[#References|[a1]]]. It is an open problem (as of 2000) whether the Alexander polynomial is preserved under rotation for any $n$, [[#References|[a3]]]. P. Traczyk has announced (in March 2001) the affirmative answer to the problem. There is a relation of rotors with statistical mechanics (cf. also [[Statistical mechanics, mathematical problems in|Statistical mechanics, mathematical problems in]]), where a tangle plays the role of spectral parameter in the [[Yang–Baxter equation|Yang–Baxter equation]], [[#References|[a4]]], [[#References|[a2]]], [[#References|[a5]]], [[#References|[a6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.P. Anstee,  J.H. Przytycki,  D. Rolfsen,  "Knot polynomials and generalized mutation"  ''Topol. Appl.'' , '''32'''  (1989)  pp. 237–249</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Hoste,  J.H. Przytycki,  "Tangle surgeries which preserve Jones-type polynomials"  ''Internat. J. Math.'' , '''8'''  (1997)  pp. 1015–1027</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.T. Jin,  D. Rolfsen,  "Some remarks on rotors in link theory"  ''Canad. Math. Bull.'' , '''34'''  (1991)  pp. 480–484</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V.F.R. Jones,  "Commuting transfer matrices and link polynomials"  ''Internat. J. Math.'' , '''3'''  (1992)  pp. 205–212</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.H. Przytycki,  "Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics" , ''Panoramas of Mathematics'' , ''Banach Center Publ.'' , '''34''' , Banach Center  (1995)  pp. 121–148</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Traczyk,  "A note on rotant links"  ''J. Knot Th. Ramifications'' , '''8''' :  3  (1999)  pp. 397–403</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  W.T. Tutte,  "Codichromatic graphs"  ''J. Combin. Th. B'' , '''16'''  (1974)  pp. 168–174</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  W.T. Tutte,  "Rotors in graph theory"  ''Ann. Discr. Math.'' , '''6'''  (1980)  pp. 343–347</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  R.P. Anstee,  J.H. Przytycki,  D. Rolfsen,  "Knot polynomials and generalized mutation"  ''Topol. Appl.'' , '''32'''  (1989)  pp. 237–249</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Hoste,  J.H. Przytycki,  "Tangle surgeries which preserve Jones-type polynomials"  ''Internat. J. Math.'' , '''8'''  (1997)  pp. 1015–1027</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  G.T. Jin,  D. Rolfsen,  "Some remarks on rotors in link theory"  ''Canad. Math. Bull.'' , '''34'''  (1991)  pp. 480–484</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  V.F.R. Jones,  "Commuting transfer matrices and link polynomials"  ''Internat. J. Math.'' , '''3'''  (1992)  pp. 205–212</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  J.H. Przytycki,  "Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics" , ''Panoramas of Mathematics'' , ''Banach Center Publ.'' , '''34''' , Banach Center  (1995)  pp. 121–148</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  P. Traczyk,  "A note on rotant links"  ''J. Knot Th. Ramifications'' , '''8''' :  3  (1999)  pp. 397–403</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  W.T. Tutte,  "Codichromatic graphs"  ''J. Combin. Th. B'' , '''16'''  (1974)  pp. 168–174</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  W.T. Tutte,  "Rotors in graph theory"  ''Ann. Discr. Math.'' , '''6'''  (1980)  pp. 343–347</td></tr></table>

Latest revision as of 16:57, 1 July 2020

Rotor in graph theory.

The $n$-rotor of a graph is the part of the graph that is invariant under the action of the cyclic group $Z_n$; [a7], [a8].

Rotor in knot theory.

The $n$-rotor of a link diagram (cf. Knot and link diagrams) is the part of the link diagram that is invariant under rotation by an angle of $2 \pi / n$.

If one modifies the rotor part of a link diagram by rotation of the rotor along an axis of symmetry of an $n$-gon in which the rotor is placed, one obtains a rotant of the original diagram. A link diagram and its rotant share, in some cases, polynomial invariants of links: the Jones polynomial for $n \leq 5$, the Jones–Conway polynomial for $n \leq 4$ and the Kauffman bracket polynomial for $n \leq 3$. Also, the problem for which $n$ and $p$ a link and its $n$-rotant share the same space of Fox $p$-colourings (cf. Fox $n$-colouring) has been solved for $n$ not divisible by $p$, or $n = p$.

Rotors can be thought of as generalizing the notion of mutation [a1]. It is an open problem (as of 2000) whether the Alexander polynomial is preserved under rotation for any $n$, [a3]. P. Traczyk has announced (in March 2001) the affirmative answer to the problem. There is a relation of rotors with statistical mechanics (cf. also Statistical mechanics, mathematical problems in), where a tangle plays the role of spectral parameter in the Yang–Baxter equation, [a4], [a2], [a5], [a6].

References

[a1] R.P. Anstee, J.H. Przytycki, D. Rolfsen, "Knot polynomials and generalized mutation" Topol. Appl. , 32 (1989) pp. 237–249
[a2] J. Hoste, J.H. Przytycki, "Tangle surgeries which preserve Jones-type polynomials" Internat. J. Math. , 8 (1997) pp. 1015–1027
[a3] G.T. Jin, D. Rolfsen, "Some remarks on rotors in link theory" Canad. Math. Bull. , 34 (1991) pp. 480–484
[a4] V.F.R. Jones, "Commuting transfer matrices and link polynomials" Internat. J. Math. , 3 (1992) pp. 205–212
[a5] J.H. Przytycki, "Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics" , Panoramas of Mathematics , Banach Center Publ. , 34 , Banach Center (1995) pp. 121–148
[a6] P. Traczyk, "A note on rotant links" J. Knot Th. Ramifications , 8 : 3 (1999) pp. 397–403
[a7] W.T. Tutte, "Codichromatic graphs" J. Combin. Th. B , 16 (1974) pp. 168–174
[a8] W.T. Tutte, "Rotors in graph theory" Ann. Discr. Math. , 6 (1980) pp. 343–347
How to Cite This Entry:
Rotor(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotor(2)&oldid=11481
This article was adapted from an original article by Jozef Przytycki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article