Namespaces
Variants
Actions

Difference between revisions of "Künneth formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 380: Line 380:
 
<table>
 
<table>
 
<TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Künneth, "Ueber die Bettische Zahlen einer Produktmannigfaltigkeit" ''Math. Ann.'' , '''90''' (1923) pp. 65–85</TD></TR>
 
<TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Künneth, "Ueber die Bettische Zahlen einer Produktmannigfaltigkeit" ''Math. Ann.'' , '''90''' (1923) pp. 65–85</TD></TR>
<TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Künneth, "Ueber die Torsionszahlen von Produktmannigfaltigkeiten" ''Math. Ann.'' , '''91''' (1924) pp. 125–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980) {{MR|0606196}} {{ZBL|0434.55001}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) {{MR|0210112}} {{MR|1325242}} {{ZBL|0145.43303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010185.png" />-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L. Kaup, "Eine Künnethformel für Fréchetgarben" ''Math. Z.'' , '''97''' : 2 (1967) pp. 158–168</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''17''' (1963) pp. Chapt. 3, Part 2</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4, vol. III)'' , ''Lect. notes in math.'' , '''305''' , Springer (1973)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Sampson, G. Washnitzer, "A Künneth formula for coherent algebraic sheaves" ''Illinois J. Math.'' , '''3''' : 3 (1959) pp. 389–402</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> R. Hartshorne, "Residues and duality" , Springer (1966) {{MR|0222093}} {{ZBL|0212.26101}} </TD></TR>
+
<TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Künneth, "Ueber die Torsionszahlen von Produktmannigfaltigkeiten" ''Math. Ann.'' , '''91''' (1924) pp. 125–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980) {{MR|0606196}} {{ZBL|0434.55001}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) {{MR|0210112}} {{MR|1325242}} {{ZBL|0145.43303}} </TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top"> M.F. Atiyah, "-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top"> L. Kaup, "Eine Künnethformel für Fréchetgarben" ''Math. Z.'' , '''97''' : 2 (1967) pp. 158–168</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''17''' (1963) pp. Chapt. 3, Part 2</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4, vol. III)'' , ''Lect. notes in math.'' , '''305''' , Springer (1973)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Sampson, G. Washnitzer, "A Künneth formula for coherent algebraic sheaves" ''Illinois J. Math.'' , '''3''' : 3 (1959) pp. 389–402</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> R. Hartshorne, "Residues and duality" , Springer (1966) {{MR|0222093}} {{ZBL|0212.26101}} </TD></TR>
 
</table>
 
</table>
  
Line 391: Line 393:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Hodgkin, "The equivariant Künneth theorem in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010190.png" />-theory" , ''Lect. notes in math.'' , '''496''' , Springer (1975)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Hodgkin, "The equivariant Künneth theorem in K-theory" , ''Lect. notes in math.'' , '''496''' , Springer (1975)</TD></TR>
 +
</table>

Latest revision as of 05:56, 19 July 2024


A formula expressing the homology (or cohomology) of a tensor product of complexes or a direct product of spaces in terms of the homology (or cohomology) of the factors.

Let \Lambda be an associative ring with a unit (cf. Associative rings and algebras), and let A and C be chain complexes of right and left \Lambda - modules, respectively. Let A \otimes C be the complex associated with the tensor product of A and C over \Lambda . If

\mathop{\rm Tor} _ {1} ( B ( A), B ( C)) = \ \mathop{\rm Tor} _ {1} ( H _ {*} ( A), B ( C)) =

= \ \mathop{\rm Tor} _ {1} ( B ( A), Z ( C)) = \mathop{\rm Tor} _ {1} ( H _ {*} ( A), Z ( C)) = 0,

then there is an exact sequence of graded modules

\tag{1 } 0 \rightarrow H _ {*} ( A) \otimes H _ {*} ( C) \mathop \rightarrow \limits ^ \alpha \ H _ {*} ( A \otimes C) \mathop \rightarrow \limits ^ \beta \

\mathop \rightarrow \limits ^ \beta \mathop{\rm Tor} _ {1} ( H _ {*} ( A), H _ {*} ( C)) \rightarrow 0,

where \alpha and \beta are homomorphisms of degree 0 and - 1 , respectively (see [2]). There is an analogous exact sequence for cochain complexes, with a homomorphism \beta of degree 1. If H _ {*} ( \mathop{\rm Tor} _ {1} ( A, C)) = 0 ( e.g. A or C is a flat \Lambda - module) and \Lambda is hereditary, the sequence (1) exists and splits [2], [3], so that

H _ {n} ( A \otimes C) = \ \sum _ {p + q = n } H _ {p} ( A) \otimes H _ {q} ( C) +

+ \sum _ {p + q = n - 1 } \mathop{\rm Tor} _ {1} ( H _ {p} ( A), H _ {q} ( C)).

This is the Künneth formula; the term Künneth formula (or Künneth relation) is sometimes also applied to the exact sequence (1). There is a generalization of (1) in which the tensor product is replaced by an arbitrary two-place functor T( A, C) , on the category of \Lambda - modules with values in the same category, that is covariant in A and contravariant in C . In particular, the functor T ( A, C) = \mathop{\rm Hom} ( A, C) yields a formula expressing the cohomology H ^ {*} ( \mathop{\rm Hom} ( A, C)) , where A is a right chain complex and C a left cochain complex over \Lambda , in terms of H _ {*} ( A) and H ^ {*} ( C) . Indeed, if \Lambda is hereditary and H ^ {*} ( \mathop{\rm Ext} ^ {1} ( A, C) ) = 0 ( e.g. A is free), one has the split exact sequence

0 \rightarrow \mathop{\rm Ext} ^ {1} ( H _ {*} ( A),\ H ^ {*} ( C)) \rightarrow ^ { {\beta ^ \prime } } \ H ^ {*} ( \mathop{\rm Hom} ( A, C)) \rightarrow ^ { {\alpha ^ \prime } } \

\rightarrow ^ { {\alpha ^ \prime } } \mathop{\rm Hom} ( H _ {*} ( A), H ^ {*} ( C)) \rightarrow 0,

where \alpha ^ \prime and \beta ^ \prime are homomorphisms of degree 0 and 1, respectively (see [2], [3]).

Let X , Y be topological spaces and let L , M be modules over a principal ideal ring R such that \mathop{\rm Tor} _ {1} ( L, M) = 0 . Then the singular homologies of the spaces X , Y , X \times Y are connected by the following split exact sequence:

0 \rightarrow H _ {*} ( X, L) \otimes H _ {*} ( Y, M) \mathop \rightarrow \limits ^ \alpha H _ {*} ( X \times Y, L \otimes M) \mathop \rightarrow \limits ^ \beta

\mathop \rightarrow \limits ^ \beta \mathop{\rm Tor} _ {1} ( H _ {*} ( X, L), H _ {*} ( Y, M)) \rightarrow 0,

where \alpha and \beta are homomorphisms of degree 0 and - 1 , respectively. If one assumes in addition that either all H _ {k} ( X, R) and H _ {k} ( Y, R) , or all H _ {k} ( Y, R) and M , are finitely generated, an analogous exact sequence is valid for the singular cohomologies:

0 \rightarrow H ^ {*} ( X, L) \otimes H ^ {*} ( Y, M) \mathop \rightarrow \limits ^ \alpha \ H ^ {*} ( X \times Y, L \otimes M) \mathop \rightarrow \limits ^ \beta

\mathop \rightarrow \limits ^ \beta \mathop{\rm Tor} _ {1} ( H ^ {*} ( X, L), H ^ {*} ( Y, M)) \rightarrow 0,

where \alpha and \beta are homomorphisms of degree 0 and 1, respectively. For example, if R is a field, then

H _ {*} ( X \times Y, R) \cong \ H _ {*} ( X, R) \otimes H _ {*} ( Y, R),

and if it is also true that all H _ {k} ( X, R) , or all H _ {k} ( Y, R) , are finite-dimensional, then

H ^ {*} ( X \times Y, R) \cong \ H ^ {*} ( X, R) \otimes H ^ {*} ( Y, R).

Similar formulas are available for the relative homology and cohomology [3], [4].

In the case L = M = R , the module H ^ {*} ( X, R) \otimes H ^ {*} ( Y, R) has the structure of a skew tensor product (cf. Skew product) of algebras, with \alpha a homomorphism of algebras. Thus, if \mathop{\rm Tor} _ {1} ( H ^ {*} ( X, R), H ^ {*} ( Y, R)) = 0 and all H _ {k} ( X, R) , or all H _ {k} ( Y, R) , are finitely generated, one has the following isomorphism of algebras [3]:

H ^ {*} ( X \times Y, R) \cong \ H ^ {*} ( X, R) \otimes H ^ {*} ( Y, R).

If X and Y are finite polyhedra, the Künneth formula enables one to find the Betti numbers and torsion coefficients of the polyhedron X \times Y in terms of the analogous invariants of X and Y . These are in fact the original results of H. Künneth himself . In particular, if b _ {k} ( X) is the k - th Betti number of the polyhedron X and if

p ( X) = \sum _ {k \geq 0 } b _ {k} ( X) t ^ {k}

is its Poincaré polynomial, then p ( X \times Y) = p ( X) p ( Y) .

In the theory of cohomology with values in a sheaf there is yet another variant of the Künneth formula [6]. Let X and Y be topological spaces with countable bases, and let {\mathcal F} and {\mathcal G} be Fréchet sheaves on X and Y ( see Coherent analytic sheaf). Suppose that {\mathcal F} ( or {\mathcal G} ) is a nuclear sheaf (i.e. {\mathcal F} ( U) is a nuclear space for all open U \subset X ). Then the Fréchet sheaf {\mathcal F} \widetilde \otimes {\mathcal G} is defined on X \times Y such that

( {\mathcal F} \widetilde \otimes {\mathcal G} ) ( U \times V) = \ {\mathcal F} ( U) \widetilde \otimes {\mathcal G} ( V),

where \widetilde \otimes is the symbol for the completed tensor product and U \subset X , V \subset Y are open. If the spaces H ^ {*} ( X, {\mathcal F} ) and H ^ {*} ( Y, {\mathcal G} ) are separable, one has the Künneth formula

H ^ {*} ( X \times Y, {\mathcal F} \widetilde \otimes {\mathcal G} ) \cong \ H ^ {*} ( X, {\mathcal F} ) \widetilde \otimes H ^ {*} ( Y, {\mathcal G} ).

In particular, coherent analytic sheaves {\mathcal F} , {\mathcal G} on complex-analytic spaces X , Y with countable bases are nuclear and

{\mathcal F} \widetilde \otimes {\mathcal G} \cong \ {\mathcal F} ^ {*} \otimes _ { {\mathcal O} _ {X \times Y } } {\mathcal G} ^ {*} ,

where {\mathcal F} ^ {*} , {\mathcal G} ^ {*} are the analytic inverse images of {\mathcal F} and {\mathcal G} under the projections X \times Y \rightarrow X and X \times Y \rightarrow Y . Thus, if H ^ {*} ( X, {\mathcal F} ) and H ^ {*} ( Y, {\mathcal G} ) are separable, then

H ^ {*} \left ( X \times Y, {\mathcal F} ^ {*} \otimes _ { {\mathcal O} _ {X \times Y } } {\mathcal G} ^ {*} \right ) \cong \ H ^ {*} ( X, {\mathcal F} ) \widetilde \otimes H ^ {*} ( Y, {\mathcal G} ).

The Künneth formulas also figure in algebraic geometry, usually in the following version. Let X and Y be algebraic varieties over a field k , and let {\mathcal F} and {\mathcal G} be coherent algebraic sheaves (cf. Coherent algebraic sheaf) on X and Y , respectively. Then [9]:

H ^ {*} \left ( X \times Y, {\mathcal F} \otimes _ { k } {\mathcal G} \right ) \cong \ H ^ {*} ( X, {\mathcal F} ) \otimes _ { k } H ^ {*} ( Y, {\mathcal G} ).

Here {\mathcal F} \otimes _ {k} {\mathcal G} is the sheaf on X \times Y whose modules of sections over U \times V ( U is an open affine subset of X , V an open affine subset of Y ) are

\Gamma ( U, {\mathcal F} ) \otimes _ { k } \Gamma ( V, {\mathcal G} ).

More generally, let p: X \rightarrow S and q: Y \rightarrow S be morphisms (cf. Morphism) in the category of schemes, let h: X \times _ {S} Y \rightarrow S be their fibred product, and let {\mathcal F} and {\mathcal G} be quasi-coherent sheaves (cf. Quasi-coherent sheaf) of modules on X and Y . Generalizing the construction of the sheaf {\mathcal F} \otimes _ {k} {\mathcal G} , one can introduce sheaves of modules \mathop{\rm Tor} _ {m} ^ {S} ( {\mathcal F} , {\mathcal G} ) on X \times Y whose modules of sections for affine S , X and Y are isomorphic to \mathop{\rm Tor} _ {m} ^ {A} ( \Gamma ( X, {\mathcal F} ), \Gamma ( Y, {\mathcal G} )) , where A = \Gamma ( S, {\mathcal O} _ {S} ) . Then [7] there exist two spectral sequences ( E ^ {r} ) and ( {} ^ \prime E ^ {r} ) with initial terms

E _ {n, m } ^ {2} = \ R ^ {-} n h _ {*} ( \mathop{\rm Tor} _ {m} ^ {S} ( {\mathcal F} , {\mathcal G} ))

and

E _ {n, m } ^ \prime 2 = \ \oplus _ {m _ {1} + m _ {2} = m } \mathop{\rm Tor} _ {n} ^ {S} ( R ^ {- m _ {1} } p _ {*} {\mathcal F} , R ^ {- m _ {2} } q _ {*} {\mathcal G} ),

having the same limit. The awkward formulation of the Künneth formula assumes a more familiar form in terms of derived functors [11]:

Rp _ {*} ( {\mathcal F} ) \otimes _ { {\mathcal O} _ {S} } ^ { L } Rq _ {*} ( {\mathcal G} ) = \ Rh _ {*} \left ( {\mathcal F} \otimes _ { {\mathcal O} _ {S} } ^ { L } {\mathcal G} \right ) .

If the sheaves {\mathcal F} and {\mathcal G} are flat over S , then the spectral sequence ( E ^ {r} ) is degenerate. Similarly, ( {} ^ \prime E ^ {r} ) degenerates if all R ^ {k} p _ {*} ( {\mathcal F} ) ( or all R ^ {k} q _ {*} ( {\mathcal G} ) ) are flat over S . If both spectral sequences ( E ^ {r} ) and ( {} ^ \prime E ^ {r} ) are degenerate, the Künneth formula becomes

R ^ {*} h _ {*} \left ( {\mathcal F} \otimes _ { {\mathcal O} _ {S} } {\mathcal G} \right ) \cong \ R ^ {*} p _ {*} ( {\mathcal F} ) \otimes _ { {\mathcal O} _ {S} } R ^ {*} q _ {k} ( {\mathcal G} ).

A Künneth formula is also valid for étale sheaves of A - modules on schemes X and Y , where A is a finite ring. It may be written as

Rp _ {!} ( {\mathcal F} ) \otimes _ { A } ^ { L } Rq _ {!} ( {\mathcal G} ) = \ Rh _ {!} \left ( {\mathcal F} \otimes _ { A } ^ { L } {\mathcal G} \right ) ,

where the ! means that the cohomology is taken with compact support. In particular (see [8]), if X and Y are complete algebraic varieties, the Künneth formula for the l - adic cohomology is

H ^ {*} ( X \times Y, \mathbf Q _ {l} ) = \ H ^ {*} ( X, \mathbf Q _ {l} ) \otimes _ {\mathbf Q _ {l} } H ^ {*} ( Y, \mathbf Q _ {l} ).

The formula has been proved for arbitrary varieties only on the assumption that the singularities can be resolved, e.g. for varieties over a field of characteristic zero.

There is also a version of the Künneth formula in K - theory. Let X be a space such that the group K ^ {*} ( X) is finitely generated, and let Y be a cellular space. Then there is an exact sequence of \mathbf Z _ {2} - graded modules

0 \rightarrow K ^ {*} ( X) \otimes K ^ {*} ( Y) \mathop \rightarrow \limits ^ \alpha K ^ {*} ( X \times Y) \mathop \rightarrow \limits ^ \beta

\mathop \rightarrow \limits ^ \beta \mathop{\rm Tor} _ {1} ( K ^ {*} ( X), K ^ {*} ( Y)) \rightarrow 0,

where \alpha and \beta are homomorphisms of degree 0 and 1, respectively (see [5]). A particular case of this proposition is the Bott periodicity theorem for complex vector bundles. A Künneth formula is also known in bordism theory [10].

References

[1a] H. Künneth, "Ueber die Bettische Zahlen einer Produktmannigfaltigkeit" Math. Ann. , 90 (1923) pp. 65–85
[1b] H. Künneth, "Ueber die Torsionszahlen von Produktmannigfaltigkeiten" Math. Ann. , 91 (1924) pp. 125–134
[2] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305
[3] A. Dold, "Lectures on algebraic topology" , Springer (1980) MR0606196 Zbl 0434.55001
[4] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) MR0210112 MR1325242 Zbl 0145.43303
[5] M.F. Atiyah, "K-theory: lectures" , Benjamin (1967) MR224083
[6] L. Kaup, "Eine Künnethformel für Fréchetgarben" Math. Z. , 97 : 2 (1967) pp. 158–168
[7] A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" Publ. Math. IHES , 17 (1963) pp. Chapt. 3, Part 2
[8] M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schémas (SGA 4, vol. III) , Lect. notes in math. , 305 , Springer (1973)
[9] J. Sampson, G. Washnitzer, "A Künneth formula for coherent algebraic sheaves" Illinois J. Math. , 3 : 3 (1959) pp. 389–402
[10] P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) MR0176478 Zbl 0125.40103
[11] R. Hartshorne, "Residues and duality" , Springer (1966) MR0222093 Zbl 0212.26101

Comments

More generally, cohomology theories have a Künneth formula spectral sequence for h ^ {*} ( X \times Y) , where X and Y are as in the last section of the main article above (e.g., for equivariant K - theory see [a1]).

References

[a1] L. Hodgkin, "The equivariant Künneth theorem in K-theory" , Lect. notes in math. , 496 , Springer (1975)
How to Cite This Entry:
Künneth formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K%C3%BCnneth_formula&oldid=55899
This article was adapted from an original article by V.I. DanilovA.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article