Difference between revisions of "Lieb-Thirring inequalities"
m (fixing spaces) |
m (latex details) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 7: | Line 7: | ||
{{TEX|semi-auto}}{{TEX|part}} | {{TEX|semi-auto}}{{TEX|part}} | ||
− | Inequalities concerning the negative | + | Inequalities concerning the negative eigenvalues of the Schrödinger operator (cf. also [[Schrödinger equation|Schrödinger equation]]) |
− | eigenvalues of the | ||
− | Schrödinger operator | ||
− | (cf. also | ||
− | [[Schrödinger equation|Schrödinger equation]]) | ||
$$ | $$ | ||
Line 17: | Line 13: | ||
$$ | $$ | ||
− | on | + | on $L ^ { 2 } ( \mathbf{R} ^ { n } )$, $n \geq 1$. With $e _ { 1 } \leq e _ { 2 } \leq \cdots < 0$ denoting the negative eigenvalue(s) of $H$ |
− | $L ^ { 2 } ( \mathbf{R} ^ { n } )$, $n \geq 1$. | + | (if any), the Lieb–Thirring inequalities state that for suitable $\gamma \geq 0$ and constants $L_{\gamma,n}$ |
− | With | ||
− | $e _ { 1 } \leq e _ { 2 } \leq \ | ||
− | denoting the negative eigenvalue(s) of | ||
− | $H$ | ||
− | (if any), the Lieb–Thirring | ||
− | inequalities state that for suitable | ||
− | $\gamma \geq 0$ | ||
− | and constants | ||
− | |||
$$ | $$ | ||
Line 33: | Line 20: | ||
$$ | $$ | ||
− | with | + | with $V _ { - } ( x ) : = \max \{ - V ( x ) , 0 \}$. When $\gamma = 0$, the left-hand side is just the number of negative eigenvalues. Such an inequality (a1) can hold if and only if |
− | $V _ { - } ( x ) : = \ | + | |
− | When | ||
− | $\gamma = 0$, | ||
− | the left-hand side is just the number of negative eigenvalues. Such an inequality (a1) | ||
− | can hold if and only if | ||
$$ | $$ | ||
\begin{equation} \tag{a2} \left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right. \end{equation} | \begin{equation} \tag{a2} \left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right. \end{equation} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
$$ | $$ | ||
− | $$ | + | The cases $\gamma > 1 / 2$, $n = 1$, $\gamma > 0$, $n \geq 2$, were established by E.H. Lieb and W.E. Thirring [[#References|[a14]]] in connection with their proof of stability of matter. The case $\gamma = 1 / 2$, $n = 1$, was established by T. Weidl [[#References|[a16]]]. The case $\gamma = 0$, $n \geq 3$, was established independently by M. Cwikel [[#References|[a15]]], Lieb [[#References|[a6]]] and G.V. Rosenbljum [[#References|[a10]]] by different methods and is known as the CLR bound; the smallest known value (as of 1998) for $L _ { 0 , n }$ is in [[#References|[a6]]], [[#References|[a7]]]. Closely associated with the inequality (a1) is the semi-classical approximation for $\sum | e | ^ { \gamma }$, which serves as a heuristic motivation for (a1). It is (cf. [[#References|[a14]]]): |
− | \ | ||
− | |||
$$ | $$ | ||
− | \begin{ | + | \begin{eqnarray*} \sum _ { j \geq 1 } | e_j | ^ { \gamma } &\approx& ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } \times {\bf R} ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x \\ |
+ | &=& L _ { \gamma , n } ^ { c } \int _ { {\bf R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x, | ||
+ | \end{eqnarray*} | ||
$$ | $$ | ||
with | with | ||
+ | |||
$$ | $$ | ||
\begin{equation*} L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }. \end{equation*} | \begin{equation*} L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }. \end{equation*} | ||
$$ | $$ | ||
− | |||
− | $L _ { \gamma , n } ^ { c } | + | Indeed, $L _ { \gamma , n } ^ { c } < \infty$ for all $\gamma \geq 0$, whereas (a1) holds only for the range given in (a2). It is easy to prove (by considering $V ( x ) = \lambda W ( x )$ with $W$ smooth and $\lambda \rightarrow \infty$) that |
− | |||
− | for all | ||
− | |||
− | $\gamma \geq 0$, | ||
− | |||
− | whereas | ||
− | |||
− | (a1) | ||
− | |||
− | holds only for the range given in | ||
− | |||
− | (a2). | ||
− | |||
− | It is easy to prove (by considering | ||
− | |||
− | $V ( x ) = \lambda W ( x )$ | ||
− | |||
− | with | ||
− | |||
− | $W$ | ||
− | |||
− | smooth and | ||
− | |||
− | $\lambda \rightarrow \infty$) | ||
− | |||
− | that | ||
+ | $$ | ||
\begin{equation*} L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }. \end{equation*} | \begin{equation*} L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }. \end{equation*} | ||
+ | $$ | ||
− | An interesting, and mostly open | + | An interesting, and mostly open (1998) problem is to determine the sharp value of the constant $L_{\gamma, n}$, especially to find those cases in which $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$. M. Aizenman and Lieb [[#References|[a3]]] proved that the ratio $R_{\gamma, n}=L_{\gamma,n}/L_{\gamma,n}^c$ is a monotonically non-increasing function of $\gamma$. Thus, if $R _ { \Gamma , n } = 1$ for some $\Gamma$, then $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ for all $\gamma \geq \Gamma$. The equality $L _ { \frac { 3 } { 2 } ,\, n } = L _ { \frac { 3 } { 2 } ,\, n } ^ { c }$ was proved for $n = 1$ in [[#References|[a14]]] and for $n > 1$ in [[#References|[a2]]] by A. Laptev and Weidl. (See also [[#References|[a1]]].) |
− | |||
− | (1998) | ||
− | |||
− | problem is to determine the sharp | ||
− | |||
− | value | ||
− | |||
− | of the constant | ||
− | |||
− | |||
− | |||
− | especially to find those cases in which | ||
− | |||
− | $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$. | ||
− | |||
− | M. Aizenman | ||
− | |||
− | and | ||
− | |||
− | Lieb | ||
− | |||
− | [[#References|[a3]]] | ||
− | |||
− | proved that the ratio | ||
− | |||
− | |||
− | |||
− | is a monotonically non-increasing function of | ||
− | |||
− | $\gamma$. | ||
− | |||
− | Thus, if | ||
− | |||
− | $R _ { \Gamma , n } = 1$ | ||
− | |||
− | for some | ||
− | |||
− | $\Gamma$, | ||
− | |||
− | then | ||
− | |||
− | $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ | ||
− | |||
− | for all | ||
− | |||
− | $\gamma \geq \Gamma$. | ||
− | |||
− | The equality | ||
− | |||
− | $L _ { \frac { 3 } { 2 } ,\, n } = L _ { \frac { 3 } { 2 } ,\, n } ^ { c }$ | ||
− | |||
− | was proved for | ||
− | |||
− | $n = 1$ | ||
− | |||
− | in | ||
− | |||
− | [[#References|[a14]]] | ||
− | |||
− | and for | ||
− | |||
− | $n | ||
− | |||
− | in | ||
− | |||
− | [[#References|[a2]]] | ||
− | |||
− | by | ||
− | |||
− | A. Laptev | ||
− | |||
− | and | ||
− | |||
− | Weidl. | ||
− | |||
− | (See also | ||
− | |||
− | [[#References|[a1]]].) | ||
The following sharp constants are known: | The following sharp constants are known: | ||
− | $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$, | + | $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$, all $\gamma \geq 3 / 2$, [[#References|[a14]]], [[#References|[a3]]], [[#References|[a2]]]; |
− | + | $L _ { 1 / 2,1 } = 1 / 2$, [[#References|[a11]]]. | |
− | + | There is strong support for the conjecture [[#References|[a14]]] that | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | There is strong support for the | ||
− | |||
− | conjecture | ||
− | |||
− | [[#References|[a14]]] | ||
− | |||
− | that | ||
+ | $$ | ||
\begin{equation} \tag{a3} L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } \left( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } \right) ^ { \gamma + 1 / 2 } \end{equation} | \begin{equation} \tag{a3} L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } \left( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } \right) ^ { \gamma + 1 / 2 } \end{equation} | ||
+ | $$ | ||
− | for | + | for $1 / 2 < \gamma < 3 / 2$. Instead of considering all the negative eigenvalues as in (a1), one can consider just $e_1$. Then for $\gamma$ as in (a2), |
− | |||
− | $1 / 2 | ||
− | |||
− | Instead of considering all the negative eigenvalues as in | ||
− | |||
− | (a1), | ||
− | |||
− | one can consider just | ||
− | |||
− | $e_1$. | ||
− | |||
− | Then for | ||
− | |||
− | $\gamma$ | ||
− | |||
− | as in | ||
− | |||
− | (a2), | ||
+ | $$ | ||
\begin{equation*} | e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x. \end{equation*} | \begin{equation*} | e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x. \end{equation*} | ||
+ | $$ | ||
− | Clearly, | + | Clearly, $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma ,n }$, but equality can hold, as in the cases $\gamma = 1 / 2$ and $3 / 2$ for $n = 1$. Indeed, the conjecture in (a3) amounts to $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ for $1 / 2 < \gamma < 3 / 2$. The sharp value (a3) of $L _ { \gamma , n} ^ { 1 }$ is obtained by solving a differential equation [[#References|[a14]]]. |
− | $L _ { \ | + | It has been conjectured that for $n \geq 3$, $L _ { 0 ,\, n } = L _ { 0 ,\, n } ^ { 1 }$. In any case, B. Helffer and D. Robert [[#References|[a12]]] showed that for all $n$ and all $\gamma < 1$, $L _ { \gamma , n } > L _ { \gamma , n } ^ { c }$. |
− | + | The sharp constant $L _ { 0 , n } ^ { 1 }$, $n \geq 3$, is related to the sharp constant $S _ { n }$ in the Sobolev inequality | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | The sharp constant | ||
− | |||
− | $L _ { 0 , n } ^ { 1 }$, | ||
− | |||
− | $n \geq 3$, | ||
− | |||
− | is related to the sharp constant | ||
− | |||
− | $S _ { n }$ | ||
− | |||
− | in the | ||
− | |||
− | Sobolev inequality | ||
+ | $$ | ||
\begin{equation} \tag{a4} \| \nabla f \| _ {{ L } ^ 2 ( \mathbf{R} ^ { n } ) } \geq S _ { n } \| f \| _ { L ^{ 2 n / ( n - 2 ) } ( \mathbf{R} ^ { n } ) } \end{equation} | \begin{equation} \tag{a4} \| \nabla f \| _ {{ L } ^ 2 ( \mathbf{R} ^ { n } ) } \geq S _ { n } \| f \| _ { L ^{ 2 n / ( n - 2 ) } ( \mathbf{R} ^ { n } ) } \end{equation} | ||
+ | $$ | ||
− | by | + | by $L _ { 0 , n } ^ { 1 } = ( S _ { n } ) ^ { - n }$. By a "duality argument" [[#References|[a14]]], the case $\gamma = 1$ in (a1) can be converted into the following bound for the [[Laplace operator|Laplace operator]], $\Delta$. This bound is referred to as a Lieb–Thirring kinetic energy inequality and its most important application is to the stability of matter [[#References|[a8]]], [[#References|[a14]]]. |
− | + | Let $f _ { 1 } , f _ { 2 } , \ldots$ be any orthonormal sequence (finite or infinite, cf. also [[Orthonormal system|Orthonormal system]]) in $L ^ { 2 } ( \mathbf{R} ^ { n } )$ such that $\nabla f _ { j } \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ for all $j \geq 1$. Associated with this sequence is a "density" | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Let | ||
− | |||
− | $f _ { 1 } , f _ { 2 } , \ldots$ | ||
− | |||
− | be | ||
− | |||
− | any | ||
− | |||
− | orthonormal sequence (finite or infinite, cf. also | ||
− | |||
− | [[Orthonormal system|Orthonormal system]]) | ||
− | |||
− | in | ||
− | |||
− | $L ^ { 2 } ( \mathbf{R} ^ { n } )$ | ||
− | |||
− | such that | ||
− | |||
− | $\nabla f _ { j } \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ | ||
− | |||
− | for all | ||
− | |||
− | $j \geq 1$. | ||
− | |||
− | Associated with this sequence is a | ||
− | |||
− | "density" | ||
+ | $$ | ||
\begin{equation} \tag{a5} \rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }. \end{equation} | \begin{equation} \tag{a5} \rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }. \end{equation} | ||
+ | $$ | ||
− | Then, with | + | Then, with $K _ { n } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / n } ( n + 2 ) ^ { - 1 - 2 / n }$, |
− | |||
− | $K _ { n } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / n } ( n + 2 ) ^ { - 1 - 2 / n }$, | ||
+ | $$ | ||
\begin{equation} \tag{a6} \sum _ { j \geq 1 } \int _ { \mathbf{R} ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { \mathbf{R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} | \begin{equation} \tag{a6} \sum _ { j \geq 1 } \int _ { \mathbf{R} ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { \mathbf{R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} | ||
+ | $$ | ||
− | This can be extended to | + | This can be extended to anti-symmetric functions in $L ^ { 2 } ( \mathbf{R} ^ { n N } )$. If $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ is such a function, one defines, for $x \in \mathbf{R} ^ { n }$, |
− | + | $$ | |
− | anti-symmetric functions | ||
− | |||
− | in | ||
− | |||
− | $L ^ { 2 } ( \mathbf{R} ^ { n N } )$. | ||
− | |||
− | If | ||
− | |||
− | $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ | ||
− | |||
− | is such a function, one defines, for | ||
− | |||
− | $x \in \mathbf{R} ^ { n }$, | ||
− | |||
\begin{equation*} \rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }. \end{equation*} | \begin{equation*} \rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }. \end{equation*} | ||
+ | $$ | ||
− | Then, if | + | Then, if $\int _ { \mathbf{R} ^ { n N } } | \Phi | ^ { 2 } = 1$, |
− | + | $$ | |
− | $\int _ { \mathbf{R} ^ { n N } } | \Phi | ^ { 2 } = 1$, | ||
− | |||
\begin{equation} \tag{a7} \int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { {\bf R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} | \begin{equation} \tag{a7} \int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { {\bf R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} | ||
+ | $$ | ||
− | Note that the choice | + | Note that the choice $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ with $f_j$ orthonormal reduces the general case (a7) to (a6). If the conjecture $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ is correct, then the bound in (a7) equals the Thomas–Fermi kinetic energy Ansatz (cf. [[Thomas–Fermi theory|Thomas–Fermi theory]]), and hence it is a challenge to prove this conjecture. In the meantime, see [[#References|[a7]]], [[#References|[a5]]] for the best available constants to date (1998). |
− | + | Of course, $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$. Inequalities of the type (a7) can be found for other powers of $- \Delta$ than the first power. The first example of this kind, due to I. Daubechies [[#References|[a13]]], and one of the most important physically, is to replace $- \Delta$ by $\sqrt { - \Delta }$ in $H$. Then an inequality similar to (a1) holds with $\gamma + n / 2$ replaced by $\gamma + n$ (and with a different $L _ { \gamma , n _ { 1 }}$, of course). Likewise there is an analogue of (a7) with $1 + 2 / n$ replaced by $1 + 1 / n$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Of course, | ||
− | |||
− | $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$. | ||
− | |||
− | Inequalities of the type | ||
− | |||
− | (a7) | ||
− | |||
− | can be found for other powers of | ||
− | |||
− | $- \Delta$ | ||
− | |||
− | than the first power. The first example of this kind, due to | ||
− | |||
− | I. Daubechies | ||
− | |||
− | [[#References|[a13]]], | ||
− | |||
− | and one of the most important physically, is to replace | ||
− | |||
− | $- \Delta$ | ||
− | |||
− | by | ||
− | |||
− | $\sqrt { - \Delta }$ | ||
− | |||
− | in | ||
− | |||
− | $H$. | ||
− | |||
− | Then an inequality similar to | ||
− | |||
− | (a1) | ||
− | |||
− | holds with | ||
− | |||
− | $\gamma + n / 2$ | ||
− | |||
− | replaced by | ||
− | |||
− | $\gamma + n$ | ||
− | |||
− | (and with a different | ||
− | |||
− | $L _ { \gamma , n _ { 1 }}$, | ||
− | |||
− | of course). Likewise there is an analogue of | ||
− | |||
− | (a7) | ||
− | |||
− | with | ||
− | |||
− | $1 + 2 / n$ | ||
− | |||
− | replaced by | ||
− | |||
− | $1 + 1 / n$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | All proofs of (a1) (except [[#References|[a11]]] and [[#References|[a16]]]) actually proceed by finding an upper bound to $N _ { E } ( V )$, the number of eigenvalues of $H = - \Delta + V ( x )$ that are below $- E$. Then, for $\gamma > 0$, | ||
+ | $$ | ||
\begin{equation*} \sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E. \end{equation*} | \begin{equation*} \sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E. \end{equation*} | ||
+ | $$ | ||
− | Assuming | + | Assuming $V = - V _ { - }$ (since $V _ { + }$ only raises the eigenvalues), $N _ { E } ( V )$ is most accessible via the positive semi-definite Birman–Schwinger kernel (cf. [[#References|[a4]]]) |
− | + | $$ | |
− | $V = - V _ { - }$ | ||
− | |||
− | (since | ||
− | |||
− | $V _ { + }$ | ||
− | |||
− | only raises the eigenvalues), | ||
− | |||
− | $N _ { E } ( V )$ | ||
− | |||
− | is most accessible via the positive semi-definite | ||
− | |||
− | Birman–Schwinger kernel | ||
− | |||
− | (cf. | ||
− | |||
− | [[#References|[a4]]]) | ||
− | |||
\begin{equation*} K _ { E } ( V ) = \sqrt { V _ { - } } ( - \Delta + E ) ^ { - 1 } \sqrt { V _ { - } }. \end{equation*} | \begin{equation*} K _ { E } ( V ) = \sqrt { V _ { - } } ( - \Delta + E ) ^ { - 1 } \sqrt { V _ { - } }. \end{equation*} | ||
+ | $$ | ||
− | $e | + | $e < 0$ is an eigenvalue of $H$ if and only if $1$ is an eigenvalue of $K _ { |e| } ( V )$. Furthermore, $K _ { E } ( V )$ is operator that is monotone decreasing in $E$, and hence $N _ { E } ( V )$ equals the number of eigenvalues of $K _ { E } ( V )$ that are greater than $1$. |
− | + | An important generalization of (a1) is to replace $- \Delta$ in $H$ by $| i \nabla + A ( x ) | ^ { 2 }$, where $A ( x )$ is some arbitrary vector field in ${\bf R} ^ { n }$ (called a magnetic vector potential). Then (a1) still holds, but it is not known if the sharp value of $L_{\gamma,n}$ changes. What is known is that all presently (1998) known values of $L_{\gamma,n}$ are unchanged. It is also known that $( - \Delta + E ) ^ { - 1 }$, as a kernel in $\mathbf{R} ^ { n } \times \mathbf{R} ^ { n }$, is pointwise greater than the absolute value of the kernel $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$. There is another family of inequalities for orthonormal functions, which is closely related to (a1) and to the CLR bound [[#References|[a9]]]. As before, let $f _ { 1 } , \dots , f _ { N }$ be $N$ orthonormal functions in $L ^ { 2 } ( \mathbf{R} ^ { n } )$ and set | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | An important generalization of | ||
− | |||
− | (a1) | ||
− | |||
− | is to replace | ||
− | |||
− | $- \Delta$ | ||
− | |||
− | in | ||
− | |||
− | $H$ | ||
− | |||
− | by | ||
− | |||
− | $| i \nabla + A ( x ) | ^ { 2 }$, | ||
− | |||
− | where | ||
− | |||
− | $A ( x )$ | ||
− | |||
− | is some arbitrary vector field in | ||
− | |||
− | ${\bf R} ^ { n }$ | ||
− | |||
− | (called a | ||
− | |||
− | magnetic vector potential). | ||
− | |||
− | Then | ||
− | |||
− | (a1) | ||
− | |||
− | still holds, but it is not known if the sharp value of | ||
− | |||
− | |||
− | |||
− | changes. What is known is that all | ||
− | |||
− | presently | ||
− | |||
− | (1998) | ||
− | |||
− | known values of | ||
− | |||
− | |||
− | |||
− | are unchanged. It is also known that | ||
− | |||
− | $( - \Delta + E ) ^ { - 1 }$, | ||
− | |||
− | as a kernel in | ||
− | |||
− | $\mathbf{R} ^ { n } \times \mathbf{R} ^ { n }$, | ||
− | |||
− | is pointwise greater than the absolute value of the kernel | ||
− | |||
− | $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$. | ||
− | |||
− | There is another family of inequalities for orthonormal functions, | ||
− | |||
− | which is closely related to | ||
− | |||
− | (a1) | ||
− | |||
− | and to the CLR | ||
− | |||
− | bound | ||
− | |||
− | [[#References|[a9]]]. | ||
− | |||
− | As before, let | ||
− | |||
− | $f _ { 1 } , \dots , f _ { N }$ | ||
− | |||
− | be | ||
− | |||
− | $N$ | ||
− | |||
− | orthonormal functions in | ||
− | |||
− | $L ^ { 2 } ( \mathbf{R} ^ { n } )$ | ||
− | |||
− | and set | ||
+ | $$ | ||
\begin{equation*} u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }, \end{equation*} | \begin{equation*} u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }, \end{equation*} | ||
+ | $$ | ||
+ | $$ | ||
\begin{equation*} \rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }. \end{equation*} | \begin{equation*} \rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }. \end{equation*} | ||
+ | $$ | ||
− | $u _ { j }$ | + | $u _ { j }$ is a [[Riesz potential|Riesz potential]] ($m = 0$) or a [[Bessel potential|Bessel potential]] ($m > 0$) of $f_j$. If $n = 1$ and $m > 0$, then $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ and $\| \rho \| _ { L^\infty ( {\bf R} )} \leq L / m$. If $n = 2$ and $m > 0$, then for all $1 \leq p < \infty$, $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$. If $n \geq 3$, $p = n / ( n - 2 )$ and $m \geq 0$ (including $m = 0$), then $\| \rho \| _ { L ^ { p } ( \mathbf{R} ^ { n } ) } \leq A _ { n } N ^ { 1 / p }$. Here, $L$, $B _ { p }$, $A _ { n }$ are universal constants. Without the orthogonality, $N ^ { 1 / p }$ would have to be replaced by $N$. |
− | |||
− | is a | ||
− | |||
− | [[Riesz potential|Riesz potential]] | ||
− | |||
− | ($m = 0$) | ||
− | |||
− | or a | ||
− | |||
− | [[Bessel potential|Bessel potential]] | ||
− | |||
− | ($m | ||
− | |||
− | of | ||
− | |||
− | $f_j$. | ||
− | |||
− | If | ||
− | |||
− | $n = 1$ | ||
− | |||
− | and | ||
− | |||
− | $m | ||
− | |||
− | then | ||
− | |||
− | $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ | ||
− | |||
− | and | ||
− | |||
− | $\| \rho \| _ { L^\infty ( {\bf R} )} \leq L / m$. | ||
− | |||
− | If | ||
− | |||
− | $n = 2$ | ||
− | |||
− | and | ||
− | |||
− | $m | ||
− | |||
− | then for all | ||
− | |||
− | $1 \leq p < \infty$, | ||
− | |||
− | $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$. | ||
− | |||
− | If | ||
− | |||
− | $n \geq 3$, | ||
− | |||
− | $p = n / ( n - 2 )$ | ||
− | |||
− | and | ||
− | |||
− | $m \geq 0$ | ||
− | |||
− | (including | ||
− | |||
− | $m = 0$), | ||
− | |||
− | then | ||
− | |||
− | $\| \rho \| _ { L ^ { p } ( \mathbf{R} ^ { n } ) } \leq A _ { n } N ^ { 1 / p }$. | ||
− | |||
− | Here, | ||
− | |||
− | $L$, | ||
− | + | Further generalizations are possible [[#References|[a9]]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Further generalizations are | ||
− | |||
− | possible | ||
− | |||
− | [[#References|[a9]]]. | ||
====References==== | ====References==== | ||
<table><tr><td valign="top">[a1]</td> <td valign="top"> | <table><tr><td valign="top">[a1]</td> <td valign="top"> | ||
− | R. Benguria, | + | R. Benguria, M. Loss, "A simple proof of a theorem of Laptev and Weidl" ''Preprint'' (1999)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> |
− | |||
− | M. Loss, | ||
− | |||
− | "A simple proof of a theorem of Laptev and Weidl" | ||
− | |||
− | ''Preprint'' | ||
− | |||
− | (1999)</td></tr><tr><td valign="top">[a2 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | A. Laptev, T. Weidl, "Sharp Lieb–Thirring inequalities in high dimensions" ''Acta Math.'' (in press 1999)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> | |
− | " | + | M.A. Aizenman, E.H. Lieb, "On semiclassical bounds for eigenvalues of Schrödinger operators" ''Phys. Lett.'' , '''66A''' (1978) pp. 427–429</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> |
− | '' | + | B. Simon, "Functional integration and quantum physics" , ''Pure Appl. Math.'' , '''86''' , Acad. Press (1979)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> |
− | , ''' | + | Ph. Blanchard, J. Stubbe, "Bound states for Schrödinger Hamiltonians: phase space methods and applications" ''Rev. Math. Phys.'' , '''8''' (1996) pp. 503–547</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> |
− | ( | + | E.H. Lieb, "The numbers of bound states of one-body Schrödinger operators and the Weyl problem" , ''Geometry of the Laplace Operator (Honolulu, 1979)'' , ''Proc. Symp. Pure Math.'' , '''36''' , Amer. Math. Soc. (1980) pp. 241–251</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> |
− | pp. | + | E.H. Lieb, "On characteristic exponents in turbulence" ''Comm. Math. Phys.'' , '''92''' (1984) pp. 473–480</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> |
− | + | E.H. Lieb, "Kinetic energy bounds and their applications to the stability of matter" H. Holden (ed.) A. Jensen (ed.) , ''Schrödinger Operators (Proc. Nordic Summer School, 1988)'' , ''Lecture Notes Physics'' , '''345''' , Springer (1989) pp. 371–382</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> | |
− | " | + | E.H. Lieb, "An $L ^ { p }$ bound for the Riesz and Bessel potentials of orthonormal functions" ''J. Funct. Anal.'' , '''51''' (1983) pp. 159–165</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> |
− | + | G.V. Rosenbljum, "Distribution of the discrete spectrum of singular differential operators" ''Dokl. Akad. Nauk SSSR'' , '''202''' (1972) pp. 1012–1015 ((The details are given in: Izv. Vyss. Uchebn. Zaved. Mat. 164 (1976), 75-86 (English transl.: Soviet Math. (Izv. VUZ) 20 (1976), 63-71)))</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> | |
− | + | D. Hundertmark, E.H. Lieb, L.E. Thomas, "A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator" ''Adv. Theor. Math. Phys.'' , '''2''' (1998) pp. 719–731</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> | |
− | '' | + | B. Helffer, D. Robert, "Riesz means of bound states and semi-classical limit connected with a Lieb–Thirring conjecture, II" ''Ann. Inst. H. Poincaré Phys. Th.'' , '''53''' (1990) pp. 139–147</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> |
− | , ''' | + | I. Daubechies, "An uncertainty principle for fermions with generalized kinetic energy" ''Comm. Math. Phys.'' , '''90''' (1983) pp. 511–520</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> |
− | : | + | E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , ''Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann'' , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977))</td></tr><tr><td valign="top">[a15]</td> <td valign="top"> |
− | ( | + | M. Cwikel, "Weak type estimates for singular values and the number of bound states of Schrödinger operators" ''Ann. Math.'' , '''106''' (1977) pp. 93–100</td></tr><tr><td valign="top">[a16]</td> <td valign="top"> |
− | pp. 135–146</td></tr></table> | + | T. Weidl, "On the Lieb–Thirring constants $L_{ \gamma , 1}$ for $\gamma \geq 1 / 2$" ''Comm. Math. Phys.'' , '''178''' : 1 (1996) pp. 135–146</td></tr></table> |
''Elliott H. Lieb'' | ''Elliott H. Lieb'' | ||
Copyright to this article is held by Elliott Lieb. | Copyright to this article is held by Elliott Lieb. |
Latest revision as of 19:26, 26 March 2023
Inequalities concerning the negative eigenvalues of the Schrödinger operator (cf. also Schrödinger equation)
$$ \begin{equation*} H = - \Delta + V ( x ) \end{equation*} $$
on $L ^ { 2 } ( \mathbf{R} ^ { n } )$, $n \geq 1$. With $e _ { 1 } \leq e _ { 2 } \leq \cdots < 0$ denoting the negative eigenvalue(s) of $H$ (if any), the Lieb–Thirring inequalities state that for suitable $\gamma \geq 0$ and constants $L_{\gamma,n}$
$$ \begin{equation} \tag{a1} \sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x \end{equation} $$
with $V _ { - } ( x ) : = \max \{ - V ( x ) , 0 \}$. When $\gamma = 0$, the left-hand side is just the number of negative eigenvalues. Such an inequality (a1) can hold if and only if
$$ \begin{equation} \tag{a2} \left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right. \end{equation} $$
The cases $\gamma > 1 / 2$, $n = 1$, $\gamma > 0$, $n \geq 2$, were established by E.H. Lieb and W.E. Thirring [a14] in connection with their proof of stability of matter. The case $\gamma = 1 / 2$, $n = 1$, was established by T. Weidl [a16]. The case $\gamma = 0$, $n \geq 3$, was established independently by M. Cwikel [a15], Lieb [a6] and G.V. Rosenbljum [a10] by different methods and is known as the CLR bound; the smallest known value (as of 1998) for $L _ { 0 , n }$ is in [a6], [a7]. Closely associated with the inequality (a1) is the semi-classical approximation for $\sum | e | ^ { \gamma }$, which serves as a heuristic motivation for (a1). It is (cf. [a14]):
$$ \begin{eqnarray*} \sum _ { j \geq 1 } | e_j | ^ { \gamma } &\approx& ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } \times {\bf R} ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x \\ &=& L _ { \gamma , n } ^ { c } \int _ { {\bf R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x, \end{eqnarray*} $$
with
$$ \begin{equation*} L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }. \end{equation*} $$
Indeed, $L _ { \gamma , n } ^ { c } < \infty$ for all $\gamma \geq 0$, whereas (a1) holds only for the range given in (a2). It is easy to prove (by considering $V ( x ) = \lambda W ( x )$ with $W$ smooth and $\lambda \rightarrow \infty$) that
$$ \begin{equation*} L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }. \end{equation*} $$
An interesting, and mostly open (1998) problem is to determine the sharp value of the constant $L_{\gamma, n}$, especially to find those cases in which $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$. M. Aizenman and Lieb [a3] proved that the ratio $R_{\gamma, n}=L_{\gamma,n}/L_{\gamma,n}^c$ is a monotonically non-increasing function of $\gamma$. Thus, if $R _ { \Gamma , n } = 1$ for some $\Gamma$, then $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ for all $\gamma \geq \Gamma$. The equality $L _ { \frac { 3 } { 2 } ,\, n } = L _ { \frac { 3 } { 2 } ,\, n } ^ { c }$ was proved for $n = 1$ in [a14] and for $n > 1$ in [a2] by A. Laptev and Weidl. (See also [a1].)
The following sharp constants are known:
$L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$, all $\gamma \geq 3 / 2$, [a14], [a3], [a2];
$L _ { 1 / 2,1 } = 1 / 2$, [a11].
There is strong support for the conjecture [a14] that
$$ \begin{equation} \tag{a3} L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } \left( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } \right) ^ { \gamma + 1 / 2 } \end{equation} $$
for $1 / 2 < \gamma < 3 / 2$. Instead of considering all the negative eigenvalues as in (a1), one can consider just $e_1$. Then for $\gamma$ as in (a2),
$$ \begin{equation*} | e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x. \end{equation*} $$
Clearly, $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma ,n }$, but equality can hold, as in the cases $\gamma = 1 / 2$ and $3 / 2$ for $n = 1$. Indeed, the conjecture in (a3) amounts to $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ for $1 / 2 < \gamma < 3 / 2$. The sharp value (a3) of $L _ { \gamma , n} ^ { 1 }$ is obtained by solving a differential equation [a14].
It has been conjectured that for $n \geq 3$, $L _ { 0 ,\, n } = L _ { 0 ,\, n } ^ { 1 }$. In any case, B. Helffer and D. Robert [a12] showed that for all $n$ and all $\gamma < 1$, $L _ { \gamma , n } > L _ { \gamma , n } ^ { c }$.
The sharp constant $L _ { 0 , n } ^ { 1 }$, $n \geq 3$, is related to the sharp constant $S _ { n }$ in the Sobolev inequality
$$ \begin{equation} \tag{a4} \| \nabla f \| _ {{ L } ^ 2 ( \mathbf{R} ^ { n } ) } \geq S _ { n } \| f \| _ { L ^{ 2 n / ( n - 2 ) } ( \mathbf{R} ^ { n } ) } \end{equation} $$
by $L _ { 0 , n } ^ { 1 } = ( S _ { n } ) ^ { - n }$. By a "duality argument" [a14], the case $\gamma = 1$ in (a1) can be converted into the following bound for the Laplace operator, $\Delta$. This bound is referred to as a Lieb–Thirring kinetic energy inequality and its most important application is to the stability of matter [a8], [a14].
Let $f _ { 1 } , f _ { 2 } , \ldots$ be any orthonormal sequence (finite or infinite, cf. also Orthonormal system) in $L ^ { 2 } ( \mathbf{R} ^ { n } )$ such that $\nabla f _ { j } \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ for all $j \geq 1$. Associated with this sequence is a "density"
$$ \begin{equation} \tag{a5} \rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }. \end{equation} $$
Then, with $K _ { n } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / n } ( n + 2 ) ^ { - 1 - 2 / n }$,
$$ \begin{equation} \tag{a6} \sum _ { j \geq 1 } \int _ { \mathbf{R} ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { \mathbf{R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} $$
This can be extended to anti-symmetric functions in $L ^ { 2 } ( \mathbf{R} ^ { n N } )$. If $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ is such a function, one defines, for $x \in \mathbf{R} ^ { n }$, $$ \begin{equation*} \rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }. \end{equation*} $$
Then, if $\int _ { \mathbf{R} ^ { n N } } | \Phi | ^ { 2 } = 1$, $$ \begin{equation} \tag{a7} \int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { {\bf R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x. \end{equation} $$
Note that the choice $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ with $f_j$ orthonormal reduces the general case (a7) to (a6). If the conjecture $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ is correct, then the bound in (a7) equals the Thomas–Fermi kinetic energy Ansatz (cf. Thomas–Fermi theory), and hence it is a challenge to prove this conjecture. In the meantime, see [a7], [a5] for the best available constants to date (1998).
Of course, $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$. Inequalities of the type (a7) can be found for other powers of $- \Delta$ than the first power. The first example of this kind, due to I. Daubechies [a13], and one of the most important physically, is to replace $- \Delta$ by $\sqrt { - \Delta }$ in $H$. Then an inequality similar to (a1) holds with $\gamma + n / 2$ replaced by $\gamma + n$ (and with a different $L _ { \gamma , n _ { 1 }}$, of course). Likewise there is an analogue of (a7) with $1 + 2 / n$ replaced by $1 + 1 / n$.
All proofs of (a1) (except [a11] and [a16]) actually proceed by finding an upper bound to $N _ { E } ( V )$, the number of eigenvalues of $H = - \Delta + V ( x )$ that are below $- E$. Then, for $\gamma > 0$, $$ \begin{equation*} \sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E. \end{equation*} $$
Assuming $V = - V _ { - }$ (since $V _ { + }$ only raises the eigenvalues), $N _ { E } ( V )$ is most accessible via the positive semi-definite Birman–Schwinger kernel (cf. [a4]) $$ \begin{equation*} K _ { E } ( V ) = \sqrt { V _ { - } } ( - \Delta + E ) ^ { - 1 } \sqrt { V _ { - } }. \end{equation*} $$
$e < 0$ is an eigenvalue of $H$ if and only if $1$ is an eigenvalue of $K _ { |e| } ( V )$. Furthermore, $K _ { E } ( V )$ is operator that is monotone decreasing in $E$, and hence $N _ { E } ( V )$ equals the number of eigenvalues of $K _ { E } ( V )$ that are greater than $1$.
An important generalization of (a1) is to replace $- \Delta$ in $H$ by $| i \nabla + A ( x ) | ^ { 2 }$, where $A ( x )$ is some arbitrary vector field in ${\bf R} ^ { n }$ (called a magnetic vector potential). Then (a1) still holds, but it is not known if the sharp value of $L_{\gamma,n}$ changes. What is known is that all presently (1998) known values of $L_{\gamma,n}$ are unchanged. It is also known that $( - \Delta + E ) ^ { - 1 }$, as a kernel in $\mathbf{R} ^ { n } \times \mathbf{R} ^ { n }$, is pointwise greater than the absolute value of the kernel $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$. There is another family of inequalities for orthonormal functions, which is closely related to (a1) and to the CLR bound [a9]. As before, let $f _ { 1 } , \dots , f _ { N }$ be $N$ orthonormal functions in $L ^ { 2 } ( \mathbf{R} ^ { n } )$ and set
$$ \begin{equation*} u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }, \end{equation*} $$
$$ \begin{equation*} \rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }. \end{equation*} $$
$u _ { j }$ is a Riesz potential ($m = 0$) or a Bessel potential ($m > 0$) of $f_j$. If $n = 1$ and $m > 0$, then $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ and $\| \rho \| _ { L^\infty ( {\bf R} )} \leq L / m$. If $n = 2$ and $m > 0$, then for all $1 \leq p < \infty$, $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$. If $n \geq 3$, $p = n / ( n - 2 )$ and $m \geq 0$ (including $m = 0$), then $\| \rho \| _ { L ^ { p } ( \mathbf{R} ^ { n } ) } \leq A _ { n } N ^ { 1 / p }$. Here, $L$, $B _ { p }$, $A _ { n }$ are universal constants. Without the orthogonality, $N ^ { 1 / p }$ would have to be replaced by $N$.
Further generalizations are possible [a9].
References
[a1] | R. Benguria, M. Loss, "A simple proof of a theorem of Laptev and Weidl" Preprint (1999) |
[a2] | A. Laptev, T. Weidl, "Sharp Lieb–Thirring inequalities in high dimensions" Acta Math. (in press 1999) |
[a3] | M.A. Aizenman, E.H. Lieb, "On semiclassical bounds for eigenvalues of Schrödinger operators" Phys. Lett. , 66A (1978) pp. 427–429 |
[a4] | B. Simon, "Functional integration and quantum physics" , Pure Appl. Math. , 86 , Acad. Press (1979) |
[a5] | Ph. Blanchard, J. Stubbe, "Bound states for Schrödinger Hamiltonians: phase space methods and applications" Rev. Math. Phys. , 8 (1996) pp. 503–547 |
[a6] | E.H. Lieb, "The numbers of bound states of one-body Schrödinger operators and the Weyl problem" , Geometry of the Laplace Operator (Honolulu, 1979) , Proc. Symp. Pure Math. , 36 , Amer. Math. Soc. (1980) pp. 241–251 |
[a7] | E.H. Lieb, "On characteristic exponents in turbulence" Comm. Math. Phys. , 92 (1984) pp. 473–480 |
[a8] | E.H. Lieb, "Kinetic energy bounds and their applications to the stability of matter" H. Holden (ed.) A. Jensen (ed.) , Schrödinger Operators (Proc. Nordic Summer School, 1988) , Lecture Notes Physics , 345 , Springer (1989) pp. 371–382 |
[a9] | E.H. Lieb, "An $L ^ { p }$ bound for the Riesz and Bessel potentials of orthonormal functions" J. Funct. Anal. , 51 (1983) pp. 159–165 |
[a10] | G.V. Rosenbljum, "Distribution of the discrete spectrum of singular differential operators" Dokl. Akad. Nauk SSSR , 202 (1972) pp. 1012–1015 ((The details are given in: Izv. Vyss. Uchebn. Zaved. Mat. 164 (1976), 75-86 (English transl.: Soviet Math. (Izv. VUZ) 20 (1976), 63-71))) |
[a11] | D. Hundertmark, E.H. Lieb, L.E. Thomas, "A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator" Adv. Theor. Math. Phys. , 2 (1998) pp. 719–731 |
[a12] | B. Helffer, D. Robert, "Riesz means of bound states and semi-classical limit connected with a Lieb–Thirring conjecture, II" Ann. Inst. H. Poincaré Phys. Th. , 53 (1990) pp. 139–147 |
[a13] | I. Daubechies, "An uncertainty principle for fermions with generalized kinetic energy" Comm. Math. Phys. , 90 (1983) pp. 511–520 |
[a14] | E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977)) |
[a15] | M. Cwikel, "Weak type estimates for singular values and the number of bound states of Schrödinger operators" Ann. Math. , 106 (1977) pp. 93–100 |
[a16] | T. Weidl, "On the Lieb–Thirring constants $L_{ \gamma , 1}$ for $\gamma \geq 1 / 2$" Comm. Math. Phys. , 178 : 1 (1996) pp. 135–146 |
Elliott H. Lieb
Copyright to this article is held by Elliott Lieb.
Lieb-Thirring inequalities. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lieb-Thirring_inequalities&oldid=52484