Namespaces
Variants
Actions

Difference between revisions of "Brun theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: expand bibliodata)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
  
 
The series $\sum 1/p$ is convergent if $p$ runs through all (the first members of all) prime [[Twins|twins]]. This means that even if the number of prime twins is infinitely large, they are still located in the natural sequence rather sparsely. This theorem was demonstrated by V. Brun [[#References|[1]]]. The convergence of a similar series for generalized twins was proved at a later date.
 
The series $\sum 1/p$ is convergent if $p$ runs through all (the first members of all) prime [[Twins|twins]]. This means that even if the number of prime twins is infinitely large, they are still located in the natural sequence rather sparsely. This theorem was demonstrated by V. Brun [[#References|[1]]]. The convergence of a similar series for generalized twins was proved at a later date.
 
====References====
 
<table>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  V. Brun,  "La série $\frac1{5} + \frac1{7} + \frac1{11} + \frac1{13} + \frac1{17} + \frac1{19} + \frac1{29} + \frac1{31} + \frac1{41} + \frac1{43} + \frac1{59} + \frac1{61} + \ldots$ où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie"  ''Bull. Sci. Math. (2)'' , '''43'''  (1919)  pp. 100–104; 124–128</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  E. Trost,  "Primzahlen" , Birkhäuser  (1953)</TD></TR></table>
 
 
 
 
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Halberstam,  H.-E. Richert,  "Sieve methods" , Acad. Press  (1974)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
Line 22: Line 9:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[b1]</TD> <TD valign="top"> Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) ISBN 0-521-81805-2  {{ZBL|1054.00001}}</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  V. Brun,  "La série $\frac1{5} + \frac1{7} + \frac1{11} + \frac1{13} + \frac1{17} + \frac1{19} + \frac1{29} + \frac1{31} + \frac1{41} + \frac1{43} + \frac1{59} + \frac1{61} + \ldots$ où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie"  ''Bull. Sci. Math. (2)'' , '''43'''  (1919)  pp. 100–104; 124–128</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  E. Trost,  "Primzahlen" , Birkhäuser  (1953)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Halberstam,  H.-E. Richert,  "Sieve methods" , Acad. Press  (1974)</TD></TR>
 +
<TR><TD valign="top">[b1]</TD> <TD valign="top"> Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) {{ISBN|0-521-81805-2}} {{ZBL|1054.00001}}</TD></TR>
 
</table>
 
</table>
 
 
 
 
 
[[Category:Number theory]]
 
[[Category:Number theory]]

Latest revision as of 05:56, 15 April 2023

on prime twins

The series $\sum 1/p$ is convergent if $p$ runs through all (the first members of all) prime twins. This means that even if the number of prime twins is infinitely large, they are still located in the natural sequence rather sparsely. This theorem was demonstrated by V. Brun [1]. The convergence of a similar series for generalized twins was proved at a later date.

Comments

The value of the sum over all elements of prime twins has been estimated as 1.9021605831….

References

[1] V. Brun, "La série $\frac1{5} + \frac1{7} + \frac1{11} + \frac1{13} + \frac1{17} + \frac1{19} + \frac1{29} + \frac1{31} + \frac1{41} + \frac1{43} + \frac1{59} + \frac1{61} + \ldots$ où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie" Bull. Sci. Math. (2) , 43 (1919) pp. 100–104; 124–128
[2] E. Trost, "Primzahlen" , Birkhäuser (1953)
[a1] H. Halberstam, H.-E. Richert, "Sieve methods" , Acad. Press (1974)
[b1] Steven R. Finch, Mathematical Constants, Cambridge University Press (2003) ISBN 0-521-81805-2 Zbl 1054.00001
How to Cite This Entry:
Brun theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brun_theorem&oldid=51647
This article was adapted from an original article by N.I. Klimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article