Difference between revisions of "Diagram"
Ulf Rehmann (talk | contribs) (tex done, several typos corrected) |
m (gather refs) |
||
Line 93: | Line 93: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tohoku Math. J.'' , '''9''' (1957) pp. 119–221</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR> | |
− | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR> | |
− | + | </table> | |
− |
Latest revision as of 10:06, 11 November 2023
in a category $ C $
A mapping $ D $ of an oriented graph $ \Gamma $ with set of vertices $ I $ and set of edges $ U $ into the category $ C $ for which
$$ D (I) \subset \mathop{\rm Ob} (C) ,\ D (U) \subset \mathop{\rm Mor} (C) , $$
and $ D (u) \in {\mathop{\rm Hom}\nolimits} ( D (i) , D (j) ) $ if the edge $ u \in U $ has source (origin) $ i $ and target (end) $ j $. The concept of a diagram in $ C $ may also be defined as the image of the mapping $ D $, in order to obtain a better visualization of diagrams.
Let $ \phi = ( u _ {1} \dots u _ {n} ) $ be an oriented chain of the graph $ \Gamma $ with source $ i $ and target $ j $, i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D (i) \mathop \rightarrow \limits D (j) $ denote the composition of morphisms
$$ D (u _ {n} ) \circ \dots \circ D (u _ {1} ) . $$
The diagram $ D $ is said to be commutative if $ D ( \phi ) = D ( \phi ^ \prime ) $ for any two oriented chains $ \phi $ and $ \phi ^ \prime $ with identical source and target.
The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form
$$ \mathop \cdot \limits _ {i _ {1}} \mathop \rightarrow \limits ^ {u _ {1}} \mathop \cdot \limits _ {i _ {2}} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits \mathop \cdot \limits _ {i _ {n-1}} \mathop \rightarrow \limits ^ {u _ {n-1}} \mathop \cdot \limits _ {i _ {n}} . $$
The corresponding diagram is represented as follows:
$$ A _ {1} \mathop \rightarrow \limits ^ {f _ {1}} A _ {2} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits A _ {n-1} \mathop \rightarrow \limits ^ {f _ {n-1}} A _ {n} , $$
where the $ A _ {k} = D ( i _ {k} ) $ are objects in the category $ C $, while the $ f _ {k} = D ( u _ {k} ) $ are morphisms in this category.
A triangular diagram in a category $ C $ corresponds to the graph
$$ \begin{array}{lcr} {i _ {1}} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits {i _ {2}} \\ {} _ {u _ {3}} \searrow &{} &\swarrow _ {u _ {2}} \\ {} &\mathop \cdot \limits _ {i _ {3}} &{} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcr} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ {} _ {f _ {3}} \searrow &{} &\swarrow _ {f _ {2}} \\ {} &A _ {3} &{} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $.
A square diagram corresponds to the graph
$$ \begin{array}{rcl} i _ {1} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits i _ {2} \\ \scriptsize {u _ {4}} \downarrow &{} &\downarrow \scriptsize {u _ {2}} \\ i _ {4} \mathop \cdot \limits &\mathop \rightarrow \limits _ {u _ {3}} &\mathop \cdot \limits i _ {3} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcl} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ \scriptsize {f _ {4}} \downarrow &{} &\downarrow \scriptsize {f _ {2}} \\ A _ {4} &\mathop \rightarrow \limits _ {f _ {3}} &A _ {3} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $.
The class of diagrams with a given graph $ \Gamma $ forms a category. A morphism of a diagram $ D $ into a diagram $ D _ {1} $ is taken to be a family of morphisms $ \nu _ {i} : D (i) \mathop \rightarrow \limits D _ {1} (i) $, where $ i $ runs through the set of vertices of $ \Gamma $, so that for any edge $ u $ with source $ i $ and target $ j $ the condition $ D _ {1} (u) \circ \nu _ {i} = \nu _ {j} \circ D (u) $ is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ is sometimes referred to as the scheme of a diagram in $ C $.
References
[1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohoku Math. J. , 9 (1957) pp. 119–221 |
[a1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
Diagram. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagram&oldid=49790