Difference between revisions of "Sign test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 41: | Line 41: | ||
\frac{1}{B ( a , b ) } | \frac{1}{B ( a , b ) } | ||
− | \int\limits _ { 0 } ^ { z } t ^ {a-} | + | \int\limits _ { 0 } ^ { z } t ^ {a-1} ( 1 - t ) ^ {b-1} dt ,\ \ |
0 \leq z \leq 1 , | 0 \leq z \leq 1 , | ||
$$ | $$ | ||
and $ B ( a , b ) $ | and $ B ( a , b ) $ | ||
− | is the beta-function. According to the sign test with significance level $ \alpha $, | + | is the [[beta-function]]. According to the sign test with significance level $ \alpha $, |
$ 0 < \alpha \leq 0 . 5 $, | $ 0 < \alpha \leq 0 . 5 $, | ||
the hypothesis $ H _ {0} $ | the hypothesis $ H _ {0} $ | ||
Line 69: | Line 69: | ||
\frac \alpha {2} | \frac \alpha {2} | ||
,\ \ | ,\ \ | ||
− | \sum _ {i = 0 } ^ { {m | + | \sum _ {i = 0 } ^ { {m + 1} } \left ( \begin{array}{c} |
n \\ | n \\ | ||
i | i | ||
Line 86: | Line 86: | ||
$$ | $$ | ||
− | {\mathsf P} \{ X _ {i} | + | {\mathsf P} \{ X _ {i} < - x \} = {\mathsf P} \{ X _ {i} > x \} . |
$$ | $$ | ||
Line 92: | Line 92: | ||
$$ | $$ | ||
− | \mu = \sum _ { i= } | + | \mu = \sum _ { i=1} ^ { n } \delta ( X _ {i} ) ,\ \ |
\delta ( x) = \left \{ | \delta ( x) = \left \{ | ||
\begin{array}{ll} | \begin{array}{ll} | ||
Line 108: | Line 108: | ||
according to which the median of an unknown continuous distribution to which independent random variables $ X _ {1} \dots X _ {n} $ | according to which the median of an unknown continuous distribution to which independent random variables $ X _ {1} \dots X _ {n} $ | ||
are subject is $ \xi _ {0} $; | are subject is $ \xi _ {0} $; | ||
− | to this end one simply replaces the given random variables by $ Y _ {1} = X _ {1} - \xi _ {0} \dots Y _ {n} = X _ {n} - \xi _ {0} $. | + | to this end one simply replaces the given random variables by $ Y _ {1} = X _ {1} - \xi _ {0} ,\dots, Y _ {n} = X _ {n} - \xi _ {0} $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian)</TD></TR></table> |
Latest revision as of 17:10, 18 June 2020
A non-parametric test for a hypothesis $ H _ {0} $,
according to which a random variable $ \mu $
has a binomial distribution with parameters $ ( n ; p = 0 . 5 ) $.
If the hypothesis $ H _ {0} $
is true, then
$$ {\mathsf P} \left \{ \mu \leq k \left | n , \frac{1}{2} \right . \right \} = \sum _ {i = 0 } ^ { k } \left ( \begin{array}{c} n \\ i \end{array} \right ) \left ( \frac{1}{2} \right ) ^ {n} = \ I _ {0,5} ( n - k , k + 1 ) , $$
$$ k = 0 \dots n , $$
where
$$ I _ {z} ( a , b ) = \frac{1}{B ( a , b ) } \int\limits _ { 0 } ^ { z } t ^ {a-1} ( 1 - t ) ^ {b-1} dt ,\ \ 0 \leq z \leq 1 , $$
and $ B ( a , b ) $ is the beta-function. According to the sign test with significance level $ \alpha $, $ 0 < \alpha \leq 0 . 5 $, the hypothesis $ H _ {0} $ is rejected if
$$ \min \{ \mu , n - \mu \} \leq m , $$
where $ m = m ( \alpha , n ) $, the critical value of the test, is the integer solution of the inequalities
$$ \sum _ {i = 0 } ^ { m } \left ( \begin{array}{c} n \\ i \end{array} \right ) \left ( \frac{1}{2} \right ) ^ {n} \leq \frac \alpha {2} ,\ \ \sum _ {i = 0 } ^ { {m + 1} } \left ( \begin{array}{c} n \\ i \end{array} \right ) \left ( \frac{1}{2} \right ) ^ {n} > \frac \alpha {2} . $$
The sign test can be used to test a hypothesis $ H _ {0} $ according to which the unknown continuous distribution of independent identically-distributed random variables $ X _ {1} \dots X _ {n} $ is symmetric about zero, i.e. for any real $ x $,
$$ {\mathsf P} \{ X _ {i} < - x \} = {\mathsf P} \{ X _ {i} > x \} . $$
In this case the sign test is based on the statistic
$$ \mu = \sum _ { i=1} ^ { n } \delta ( X _ {i} ) ,\ \ \delta ( x) = \left \{ \begin{array}{ll} 1 & \textrm{ if } x > 0 , \\ 0 & \textrm{ if } x < 0 , \\ \end{array} \right .$$
which is governed by a binomial law with parameters $ ( n ; p = 0 . 5 ) $ if the hypothesis $ H _ {0} $ is true.
Similarly, the sign test is used to test a hypothesis $ H _ {0} $ according to which the median of an unknown continuous distribution to which independent random variables $ X _ {1} \dots X _ {n} $ are subject is $ \xi _ {0} $; to this end one simply replaces the given random variables by $ Y _ {1} = X _ {1} - \xi _ {0} ,\dots, Y _ {n} = X _ {n} - \xi _ {0} $.
References
[1] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[2] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
[3] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
[4] | N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian) |
Sign test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sign_test&oldid=49582