Difference between revisions of "Remainder"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 19: | Line 19: | ||
$$ | $$ | ||
f( x) = \ | f( x) = \ | ||
− | \sum _ { k= } | + | \sum _ {k=0} ^ { n } |
\frac{f ^ { ( k) } ( x _ {0} ) }{k!} | \frac{f ^ { ( k) } ( x _ {0} ) }{k!} | ||
( x - x _ {0} ) ^ {k} + | ( x - x _ {0} ) ^ {k} + | ||
Line 58: | Line 58: | ||
for which $ a= kb+ c $ | for which $ a= kb+ c $ | ||
with $ k $ | with $ k $ | ||
− | an integer. See also [[ | + | an integer. See also [[Remainder of an integer]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Spivak, "Calculus" , Benjamin (1967)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Spivak, "Calculus" , Benjamin (1967)</TD></TR></table> |
Latest revision as of 09:03, 6 January 2024
of an expansion of a function
An additive term in a formula approximating a function by another, simpler, function. The remainder equals the difference between the given function and its approximating function, and an estimate of it is therefore an estimate of the accuracy of the approximation.
The approximating formulas alluded to include the Taylor formula, interpolation formulas, asymptotic formulas, formulas for the approximate evaluation of some quantity, etc. Thus, in the Taylor formula
$$ f( x) = \ \sum _ {k=0} ^ { n } \frac{f ^ { ( k) } ( x _ {0} ) }{k!} ( x - x _ {0} ) ^ {k} + o(( x - x _ {0} ) ^ {n} ),\ {\textrm{ as } } x \rightarrow x _ {0} , $$
the term $ o(( x - x _ {0} ) ^ {n} ) $ is called the remainder (in Peano's form). Given the asymptotic expansion
$$ f( x) = a _ {0} + \frac{a _ {1} }{x} + \dots + \frac{a _ {n} }{x ^ {n} } + O \left ( \frac{1}{x ^ {n+} 1 } \right ) ,\ {\textrm{ as } } x \rightarrow + \infty , $$
of a function, the remainder is $ O( x ^ {-} n- 1 ) $, as $ x \rightarrow \infty $. In the Stirling formula, which gives an asymptotic expansion of the Euler gamma-function,
$$ \Gamma ( s + 1 ) = \sqrt {2 \pi s } \left ( \frac{s}{e} \right ) ^ {s} + O \left ( e ^ {-} s s ^ {s - 1 / 2 } \right ) ,\ {\textrm{ as } } s \rightarrow + \infty , $$
the remainder is $ O( e ^ {-} s s ^ {s-} 1/2 ) $.
Comments
The remainder of an integer $ a $ upon division by a natural number $ b $ is the number $ c $, $ 0 \leq c < b $, for which $ a= kb+ c $ with $ k $ an integer. See also Remainder of an integer.
References
[a1] | N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5 |
[a2] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a3] | M. Spivak, "Calculus" , Benjamin (1967) |
Remainder. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Remainder&oldid=48507