Namespaces
Variants
Actions

Difference between revisions of "Poincaré sphere"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (using labels)
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
 
-->
 
-->
  
{{TEX|auto}}
+
{{TEX|auto}}{{TEX|done}}
{{TEX|done}}
 
  
The sphere in the space $ \mathbf R ^ {3} $
+
The sphere in the space $\mathbf R^{3}$
with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $ \mathbf R P  ^ {2} $;
+
with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $\mathbf R P  ^ {2} $.
it was introduced by H. Poincaré (see ) to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system
+
It was introduced by H. Poincaré to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system
 
+
\begin{equation}\label{e1}
$$ \tag{1 }
 
 
\dot{x}  =  P ( x , y ) ,\ \  
 
\dot{x}  =  P ( x , y ) ,\ \  
 
\dot{y}  =  Q ( x , y )
 
\dot{y}  =  Q ( x , y )
$$
+
\end{equation}
 +
when $P$ and $Q$ are polynomials. The Poincaré sphere is usually depicted so that it touches the  $  ( x , y ) $-plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto  $  \mathbf R P  ^ {2} $, and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system \eqref{e1} map onto curves on the sphere.
  
when  $  P $
+
An equivalent method of investigating the system \eqref{e1} is to apply a Poincaré transformation:
and  $  Q $
 
are polynomials. The Poincaré sphere is usually depicted so that it touches the  $  ( x , y ) $-
 
plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto  $  \mathbf R P  ^ {2} $,
 
and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system (1) map onto curves on the sphere.
 
 
 
An equivalent method of investigating the system (1) is to apply a Poincaré transformation:
 
  
 
a)
 
a)
Line 51: Line 44:
  
 
The first (respectively, the second) is suitable outside a sector containing the  $  y $-
 
The first (respectively, the second) is suitable outside a sector containing the  $  y $-
axis ( $  x $-
+
axis ( $  x $-axis). For example, the transformation a) reduces the system \eqref{e1} to the form
axis). For example, the transformation a) reduces the system (1) to the form
 
  
$$ \tag{1'}
+
\begin{equation} \label{e2}
  
 
\frac{du}{d \tau }
 
\frac{du}{d \tau }
Line 61: Line 53:
 
\frac{dz}{d \tau }
 
\frac{dz}{d \tau }
 
   =  Q  ^ {*} ( u , z ) ,
 
   =  Q  ^ {*} ( u , z ) ,
$$
+
\end{equation}
  
 
where  $  d t = z  ^ {n}  d \tau $
 
where  $  d t = z  ^ {n}  d \tau $
 
and  $  n $
 
and  $  n $
 
is the largest of the degrees of  $  P $,  
 
is the largest of the degrees of  $  P $,  
$  Q $;
+
$  Q $. The singular points of the system \eqref{e2} are called the singular points at infinity of the system \eqref{e1}. If the polynomials  $  P $
the singular points of the system (1'}) are called the singular points at infinity of the system (1). If the polynomials  $  P $
 
 
and  $  Q $
 
and  $  Q $
 
are coprime, then the polynomials  $  P  ^ {*} $
 
are coprime, then the polynomials  $  P  ^ {*} $
 
and  $  Q  ^ {*} $
 
and  $  Q  ^ {*} $
are also coprime and the system (1) has a finite number of singular points at infinity.
+
are also coprime and the system \eqref{e1} has a finite number of singular points at infinity.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Poincaré,   "Mémoire sur les courbes définiés par une équation differentielle"  ''J. de Math.'' , '''7'''  (1881)  pp. 375–422</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Poincaré,   "Mémoire sur les courbes définiés par une équation differentielle"  ''J. de Math.'' , '''8'''  (1882)  pp. 251–296</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Poincaré,   "Mémoire sur les courbes définiés par une équation differentielle"  ''J. de Math.'' , '''1'''  (1885)  pp. 167–244</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Poincaré,   "Mémoire sur les courbes définiés par une équation differentielle"  ''J. de Math.'' , '''2'''  (1886)  pp. 151–217</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Andronov,  E.A. Leontovich,  I.I. Gordon,  A.G. Maier,  "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Lefschetz,  "Differential equations: geometric theory" , Interscience  (1957)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle"  ''J. de Math.'' , '''7'''  (1881)  pp. 375–422</TD></TR>
 +
<TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle"  ''J. de Math.'' , '''8'''  (1882)  pp. 251–296</TD></TR>
 +
<TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle"  ''J. de Math.'' , '''1'''  (1885)  pp. 167–244</TD></TR>
 +
<TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle"  ''J. de Math.'' , '''2'''  (1886)  pp. 151–217</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Andronov,  E.A. Leontovich,  I.I. Gordon,  A.G. Maier,  "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  S. Lefschetz,  "Differential equations: geometric theory" , Interscience  (1957)</TD></TR>
 +
</table>

Latest revision as of 07:59, 21 March 2023


The sphere in the space $\mathbf R^{3}$ with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $\mathbf R P ^ {2} $. It was introduced by H. Poincaré to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system \begin{equation}\label{e1} \dot{x} = P ( x , y ) ,\ \ \dot{y} = Q ( x , y ) \end{equation} when $P$ and $Q$ are polynomials. The Poincaré sphere is usually depicted so that it touches the $ ( x , y ) $-plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto $ \mathbf R P ^ {2} $, and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system \eqref{e1} map onto curves on the sphere.

An equivalent method of investigating the system \eqref{e1} is to apply a Poincaré transformation:

a)

$$ x = \frac{1}{z} ,\ y = \frac{u}{z} , $$

or

b)

$$ x = \frac{u}{z} ,\ y = \frac{1}{z} . $$

The first (respectively, the second) is suitable outside a sector containing the $ y $- axis ( $ x $-axis). For example, the transformation a) reduces the system \eqref{e1} to the form

\begin{equation} \label{e2} \frac{du}{d \tau } = P ^ {*} ( u , z ) ,\ \ \frac{dz}{d \tau } = Q ^ {*} ( u , z ) , \end{equation}

where $ d t = z ^ {n} d \tau $ and $ n $ is the largest of the degrees of $ P $, $ Q $. The singular points of the system \eqref{e2} are called the singular points at infinity of the system \eqref{e1}. If the polynomials $ P $ and $ Q $ are coprime, then the polynomials $ P ^ {*} $ and $ Q ^ {*} $ are also coprime and the system \eqref{e1} has a finite number of singular points at infinity.

References

[1a] H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 7 (1881) pp. 375–422
[1b] H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 8 (1882) pp. 251–296
[1c] H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 1 (1885) pp. 167–244
[1d] H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 2 (1886) pp. 151–217
[2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)
[3] S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957)
How to Cite This Entry:
Poincaré sphere. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_sphere&oldid=48209
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article