Difference between revisions of "Partial differential equations on a manifold"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 27: | Line 27: | ||
$ \mathop{\rm dim} N= n $). | $ \mathop{\rm dim} N= n $). | ||
A cross section over an open set $ U \subset N $ | A cross section over an open set $ U \subset N $ | ||
− | is a differentiable mapping $ s: U \rightarrow \pi ^ {-} | + | is a differentiable mapping $ s: U \rightarrow \pi ^ {-1} ( U) \subset M $ |
such that $ \pi \circ s = \mathop{\rm id} $. | such that $ \pi \circ s = \mathop{\rm id} $. | ||
− | An $ r $- | + | An $ r $-jet of cross sections at $ x \in N $ |
− | jet of cross sections at $ x \in N $ | ||
is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $, | is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $, | ||
$ i= 1, 2 $, | $ i= 1, 2 $, | ||
− | are $ r $- | + | are $ r $-jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $ |
− | jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $ | ||
if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $ | if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $ | ||
and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $ | and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $ | ||
Line 54: | Line 52: | ||
$ | \alpha | = a _ {1} + \dots + a _ {n} $. | $ | \alpha | = a _ {1} + \dots + a _ {n} $. | ||
Let $ J ^ {r} ( \pi ) $ | Let $ J ^ {r} ( \pi ) $ | ||
− | be the set of all $ r $- | + | be the set of all $ r $-jets. In local coordinates $ \pi $ |
− | jets. In local coordinates $ \pi $ | ||
looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $, | looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $, | ||
$ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $. | $ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $. | ||
Line 61: | Line 58: | ||
is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $, | is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $, | ||
[[#References|[a2]]], [[#References|[a5]]]. The differentiable bundle $ J ^ {r} ( \pi ) $ | [[#References|[a2]]], [[#References|[a5]]]. The differentiable bundle $ J ^ {r} ( \pi ) $ | ||
− | is called the $ r $- | + | is called the $ r $-th jet bundle of the fibred manifold $ \pi : M \rightarrow N $. |
− | th jet bundle of the fibred manifold $ \pi : M \rightarrow N $. | ||
For the case of a vector bundle $ E \rightarrow N $ | For the case of a vector bundle $ E \rightarrow N $ | ||
see also [[Linear differential operator|Linear differential operator]]; for the case $ \pi : N \times N ^ \prime \rightarrow N $ | see also [[Linear differential operator|Linear differential operator]]; for the case $ \pi : N \times N ^ \prime \rightarrow N $ | ||
Line 72: | Line 68: | ||
with $ | \alpha | > k $. | with $ | \alpha | > k $. | ||
It is convenient to set $ p ^ {0,k } = u ^ {k} $ | It is convenient to set $ p ^ {0,k } = u ^ {k} $ | ||
− | and $ J ^ {-} | + | and $ J ^ {-1} ( \pi ) = N $, |
and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $ | and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $ | ||
is defined in the same way (forget about all $ p ^ \alpha $ | is defined in the same way (forget about all $ p ^ \alpha $ | ||
Line 87: | Line 83: | ||
such that $ f \circ J ^ {r} ( s)= 0 $ | such that $ f \circ J ^ {r} ( s)= 0 $ | ||
for all $ f \in \mathfrak a $. | for all $ f \in \mathfrak a $. | ||
− | The set of integral points of $ \mathfrak a $( | + | The set of integral points of $ \mathfrak a $ (i.e. the zeros of $ \mathfrak a $ |
− | i.e. the zeros of $ \mathfrak a $ | ||
on $ J ^ {r} ( \pi ) $) | on $ J ^ {r} ( \pi ) $) | ||
is denoted by $ J ( \mathfrak a ) $. | is denoted by $ J ( \mathfrak a ) $. | ||
Line 101: | Line 96: | ||
where $ \partial ^ {k} f $ | where $ \partial ^ {k} f $ | ||
on an $ r+ 1 $ | on an $ r+ 1 $ | ||
− | jet $ j _ {x} ^ {r+} | + | jet $ j _ {x} ^ {r+1} ( s) $ |
at $ x \in N $ | at $ x \in N $ | ||
is defined by | is defined by | ||
$$ | $$ | ||
− | ( \partial ^ {k} f )( j _ {x} ^ {r+} | + | ( \partial ^ {k} f )( j _ {x} ^ {r+1} ( s)) = |
\frac \partial {\partial x ^ {k} } | \frac \partial {\partial x ^ {k} } | ||
f( j _ {x} ^ {r} ( s)). | f( j _ {x} ^ {r} ( s)). | ||
Line 127: | Line 122: | ||
and all $ \alpha = ( a _ {1} \dots a _ {n} ) $ | and all $ \alpha = ( a _ {1} \dots a _ {n} ) $ | ||
with $ | \alpha | \leq r $, | with $ | \alpha | \leq r $, | ||
− | and $ \alpha ( i) = ( a _ {1} \dots a _ {i-} | + | and $ \alpha ( i) = ( a _ {1} \dots a _ {i-1} , a _ {i} + 1 , a _ {i+1} \dots a _ {n} ) $, |
− | $ a _ {i} \in \{ 0, 1, \dots \} $( | + | $ a _ {i} \in \{ 0, 1, \dots \} $ (and $ p ^ {0,j } = u ^ {j} $). |
− | and $ p ^ {0,j } = u ^ {j} $). | ||
The system $ \mathfrak a $ | The system $ \mathfrak a $ | ||
Line 135: | Line 129: | ||
[[#References|[a1]]], if the following two conditions are satisfied: i) $ \mathfrak a $ | [[#References|[a1]]], if the following two conditions are satisfied: i) $ \mathfrak a $ | ||
is a regular local equation for the zeros of $ \mathfrak a $ | is a regular local equation for the zeros of $ \mathfrak a $ | ||
− | at $ z $( | + | at $ z $ |
− | i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $ | + | (i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $ |
of $ \mathfrak a $ | of $ \mathfrak a $ | ||
on an open neighbourhood $ U $ | on an open neighbourhood $ U $ | ||
Line 148: | Line 142: | ||
and ii) there is a neighbourhood $ U $ | and ii) there is a neighbourhood $ U $ | ||
of $ z $ | of $ z $ | ||
− | such that $ \pi _ {r+ 1,r } ^ {-} | + | such that $ \pi _ {r+ 1,r } ^ {-1} ( U) \cap J( p( \mathfrak a )) $ |
is a fibred manifold over $ U \cap J ( \mathfrak a ) $( | is a fibred manifold over $ U \cap J ( \mathfrak a ) $( | ||
with projection $ \pi _ {r+ 1,r } $). | with projection $ \pi _ {r+ 1,r } $). | ||
Line 171: | Line 165: | ||
The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $ | The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $ | ||
− | of $ p ^ {t} ( \mathfrak a ) $( | + | of $ p ^ {t} ( \mathfrak a ) $ ($ t= 0, 1,\dots $) |
− | $ t= 0, 1,\dots $) | + | projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-1} $) |
− | projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-} | ||
such that: a) $ p ^ {t} ( \mathfrak a ) $ | such that: a) $ p ^ {t} ( \mathfrak a ) $ | ||
is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $ | is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $ | ||
Line 181: | Line 174: | ||
in $ J( p ^ {t} ( \mathfrak a ) ) $ | in $ J( p ^ {t} ( \mathfrak a ) ) $ | ||
such that its projection under $ \pi _ {r+ t,r+ t- 1 } $ | such that its projection under $ \pi _ {r+ t,r+ t- 1 } $ | ||
− | contains a neighbourhood of $ z ^ {t-} | + | contains a neighbourhood of $ z ^ {t-1} $ |
− | in $ J ( p ^ {t-} | + | in $ J ( p ^ {t-1} ( \mathfrak a ) ) $ |
and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $ | and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $ | ||
is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $ | is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $ |
Latest revision as of 21:26, 3 January 2021
The basic idea is that a partial differential equation is given by a set of functions in a jet bundle, which is natural because after all a (partial) differential equation is a relation between a function, its dependent variables and its derivatives up to a certain order. In the sequel, all manifolds and mappings are either all $ C ^ \infty $
or all real-analytic.
A fibred manifold is a triple $ ( M, N, \pi ) $ consisting of two manifolds $ M $, $ N $ and a differentiable mapping $ \pi : M \rightarrow N $ such that $ d \pi ( m) : T _ {m} M \rightarrow T _ {\pi ( m) } N $ is surjective for all $ m \in M $. An example is a vector bundle $ ( E, N, \pi ) $ over $ N $. This means that locally around each $ m \in M $ the situation looks like the canonical projection $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $( $ \mathop{\rm dim} M= m+ n $, $ \mathop{\rm dim} N= n $). A cross section over an open set $ U \subset N $ is a differentiable mapping $ s: U \rightarrow \pi ^ {-1} ( U) \subset M $ such that $ \pi \circ s = \mathop{\rm id} $. An $ r $-jet of cross sections at $ x \in N $ is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $, $ i= 1, 2 $, are $ r $-jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $ if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $ and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $ and $ x _ {0} $ one has
$$ \left . \frac{\partial ^ \alpha s _ {1} }{\partial x ^ \alpha } \ \right | _ {x= x _ {0} } = \left . \frac{\partial ^ \alpha s _ {2} }{\partial x ^ \alpha } \ \right | _ {x= x _ {0} } ,\ 0 \leq | \alpha | \leq r , $$
where $ \alpha = ( a _ {1} \dots a _ {n} ) $, $ a _ {i} \in \{ 0, 1,\dots \} $, $ | \alpha | = a _ {1} + \dots + a _ {n} $. Let $ J ^ {r} ( \pi ) $ be the set of all $ r $-jets. In local coordinates $ \pi $ looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $, $ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $. It readily follows that $ J ^ {r} ( \pi ) $ is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $, [a2], [a5]. The differentiable bundle $ J ^ {r} ( \pi ) $ is called the $ r $-th jet bundle of the fibred manifold $ \pi : M \rightarrow N $. For the case of a vector bundle $ E \rightarrow N $ see also Linear differential operator; for the case $ \pi : N \times N ^ \prime \rightarrow N $ one finds $ J ^ {r} ( N, N ^ \prime ) $, the jet bundle of mappings $ N \rightarrow N ^ \prime $. There are natural fibre bundle mappings $ \pi _ {r,k } : J ^ {r} ( \pi ) \rightarrow J ^ {k} ( \pi ) $ for $ r \geq k \geq 0 $, defined in local coordinates by forgetting about the $ p ^ \alpha $ with $ | \alpha | > k $. It is convenient to set $ p ^ {0,k } = u ^ {k} $ and $ J ^ {-1} ( \pi ) = N $, and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $ is defined in the same way (forget about all $ p ^ \alpha $ and the $ u ^ {j} $).
Let $ {\mathcal O} ( J ^ {r} ( \pi )) $ be the sheaf of (germs of) differentiable functions on $ J ^ {r} ( \pi ) $. It is a sheaf of rings. A subsheaf of ideals $ \mathfrak a $ of $ {\mathcal O}( J ^ {r} ( \pi ) ) $ is a system of partial differential equations of order $ r $ on $ N $. A solution of the system $ \mathfrak a $ is a section $ s : N \rightarrow M $ such that $ f \circ J ^ {r} ( s)= 0 $ for all $ f \in \mathfrak a $. The set of integral points of $ \mathfrak a $ (i.e. the zeros of $ \mathfrak a $ on $ J ^ {r} ( \pi ) $) is denoted by $ J ( \mathfrak a ) $. The prolongation $ p ( \mathfrak a ) $ of $ \mathfrak a $ is defined as the system of order $ r+ 1 $ on $ N $ generated by the $ f \in \mathfrak a $( strictly speaking, the $ f \circ \pi _ {r,r- 1 } $) and the $ \partial ^ {k} f $, $ f \in \mathfrak a $, where $ \partial ^ {k} f $ on an $ r+ 1 $ jet $ j _ {x} ^ {r+1} ( s) $ at $ x \in N $ is defined by
$$ ( \partial ^ {k} f )( j _ {x} ^ {r+1} ( s)) = \frac \partial {\partial x ^ {k} } f( j _ {x} ^ {r} ( s)). $$
In local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } ) $ the formal derivative $ \partial ^ {k} f $ is given by
$$ \partial ^ {k} f ( x , u , p) = \frac{\partial f }{\partial x ^ {k} } + \sum p ^ {\alpha ( i),j } \frac{\partial f }{\partial p ^ {\alpha ,j } } , $$
where the sum on the right is over $ j= 1 \dots m $ and all $ \alpha = ( a _ {1} \dots a _ {n} ) $ with $ | \alpha | \leq r $, and $ \alpha ( i) = ( a _ {1} \dots a _ {i-1} , a _ {i} + 1 , a _ {i+1} \dots a _ {n} ) $, $ a _ {i} \in \{ 0, 1, \dots \} $ (and $ p ^ {0,j } = u ^ {j} $).
The system $ \mathfrak a $ is said to be involutive at an integral point $ z \in J ^ {r} ( \pi ) $, [a1], if the following two conditions are satisfied: i) $ \mathfrak a $ is a regular local equation for the zeros of $ \mathfrak a $ at $ z $ (i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $ of $ \mathfrak a $ on an open neighbourhood $ U $ of $ z $ such that the integral points of $ \mathfrak a $ in $ U $ are precisely the points $ z ^ \prime $ for which $ s _ {j} ( z ^ \prime )= 0 $ and $ ds _ {1} \dots ds _ {t} $ are linearly independent at $ z $); and ii) there is a neighbourhood $ U $ of $ z $ such that $ \pi _ {r+ 1,r } ^ {-1} ( U) \cap J( p( \mathfrak a )) $ is a fibred manifold over $ U \cap J ( \mathfrak a ) $( with projection $ \pi _ {r+ 1,r } $). For a system $ \mathfrak a $ generated by linearly independent Pfaffian forms $ \theta ^ {1} \dots \theta ^ {k} $( i.e. a Pfaffian system, cf. Pfaffian problem) this is equivalent to the involutiveness defined in Involutive distribution, [a2], [a3]. As in that case of involutiveness one has to deal with solutions.
Let $ \mathfrak a $ be a system defined on $ J ^ {r} ( \pi ) $, and suppose that $ \mathfrak a $ is involutive at $ z \in J ( \mathfrak a ) $. Then there is a neighbourhood $ U $ of $ z $ satisfying the following. If $ \widetilde{z} \in J ( p ^ {t} ( \mathfrak a )) $ and $ \pi _ {r+ t,r } ( \widetilde{z} ) $ is in $ U $, then there is a solution $ f $ of $ \mathfrak a $ defined on a neighbourhood of $ x= \pi _ {r+ t,- 1 } ( \widetilde{z} ) $ such that $ J ^ {r+ t } ( f ) = \widetilde{z} $ at $ x $.
The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $ of $ p ^ {t} ( \mathfrak a ) $ ($ t= 0, 1,\dots $) projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-1} $) such that: a) $ p ^ {t} ( \mathfrak a ) $ is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $ at $ z ^ {t} $; and b) there is a neighbourhood $ U ^ {t} $ of $ z ^ {t} $ in $ J( p ^ {t} ( \mathfrak a ) ) $ such that its projection under $ \pi _ {r+ t,r+ t- 1 } $ contains a neighbourhood of $ z ^ {t-1} $ in $ J ( p ^ {t-1} ( \mathfrak a ) ) $ and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $ is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $ is involutive at $ z ^ {t} $ for $ t $ large enough. This prolongation theorem has important applications in the Lie–Cartan theory of infinite-dimensional Lie groups. The theorem has been extended to cover more general cases [a4].
References
[a1] | M. Kuranishi, "On E. Cartan's prolongation theorem of exterior differential systems" Amer. J. Math. , 79 (1957) pp. 1–47 MR0081957 |
[a2] | M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967) Zbl 0163.12001 |
[a3] | I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 MR0217822 Zbl 0277.58008 |
[a4] | M. Matsuda, "Cartan–Kuranishi's prolongation of differential systems combined with that of Lagrange–Jacobi" Publ. Math. RIMS , 3 (1967) pp. 69–84 MR222438 |
[a5] | M.W. Hirsch, "Differential topology" , Springer (1976) pp. Sect. 2.4 MR0448362 Zbl 0356.57001 |
Partial differential equations on a manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Partial_differential_equations_on_a_manifold&oldid=48134