Namespaces
Variants
Actions

Difference between revisions of "Oscillating solution"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
(One intermediate revision by the same user not shown)
Line 15: Line 15:
  
 
$$ \tag{* }
 
$$ \tag{* }
x  ^ {(} n)  = \  
+
x  ^ {(n)} = \  
f ( t , x , x  ^  \prime  \dots x  ^ {(} n- 1) ),\ \  
+
f ( t , x , x  ^  \prime  \dots x  ^ {(n- 1)} ),\ \  
 
t \in [ t _ {0} , \infty ) ,
 
t \in [ t _ {0} , \infty ) ,
 
$$
 
$$
Line 51: Line 51:
 
on  $  [ 0 , \omega ] $.
 
on  $  [ 0 , \omega ] $.
  
In a number of applications there arises the question of the existence of oscillating solutions (in the above sense) of a system of ordinary differential equations. For example, in control theory one studies the oscillation relative to a given hyperplane  $  \sum _ {i=} 1 ^ {n} c _ {i} x _ {i} = 0 $
+
In a number of applications there arises the question of the existence of oscillating solutions (in the above sense) of a system of ordinary differential equations. For example, in control theory one studies the oscillation relative to a given hyperplane  $  \sum _ {i=1}  ^ {n} c _ {i} x _ {i} = 0 $
 
of the solutions  $  x ( t) = ( x _ {1} ( t) \dots x _ {n} ( t) ) $
 
of the solutions  $  x ( t) = ( x _ {1} ( t) \dots x _ {n} ( t) ) $
 
of the system of equations  $  x  ^  \prime  = f ( t , x ) $,  
 
of the system of equations  $  x  ^  \prime  = f ( t , x ) $,  
that is, the question whether the function  $  \sigma ( t) = \sum _ {i=} 1 ^ {n} c _ {i} x _ {i} ( t) $
+
that is, the question whether the function  $  \sigma ( t) = \sum _ {i=1}  ^ {n} c _ {i} x _ {i} ( t) $
 
oscillates.  $  [ \alpha , \beta ] $-
 
oscillates.  $  [ \alpha , \beta ] $-
 
oscillating solutions are also studied; a bounded solution  $  x ( t) $
 
oscillating solutions are also studied; a bounded solution  $  x ( t) $
Line 71: Line 71:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR></table>
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR></table>
 

Latest revision as of 08:04, 12 January 2024


A solution $ x ( t) $ of a differential equation

$$ \tag{* } x ^ {(n)} = \ f ( t , x , x ^ \prime \dots x ^ {(n- 1)} ),\ \ t \in [ t _ {0} , \infty ) , $$

with the property: There exists for any $ t _ {1} \geq t _ {0} $ a point $ t _ {2} > t _ {1} $ such that $ x ( t) $ changes sign on passing through it. In many applied problems there arises the question of the existence of an oscillating solution or the question whether all the solutions of equation (*) oscillate. Many sufficient conditions are known under which equation (*) has an oscillating solution (see [1], [2], [3]). For example, any non-trivial solution of the equation $ x ^ {\prime\prime} + 2 \delta x ^ \prime + \omega ^ {2} x = 0 $ with constant coefficients is oscillating if $ \delta ^ {2} < \omega ^ {2} $; every non-trivial solution of the equation

$$ x ^ {\prime\prime} + p ( t) x ^ \prime + q ( t) x = 0 $$

with $ \omega $- periodic coefficients is oscillating if

$$ \int\limits _ { 0 } ^ \infty dt \int\limits _ { t } ^ { {t } + \omega } q ( s) \mathop{\rm exp} \left ( - \int\limits _ { s } ^ { t } p ( r) dr \right ) ds \geq $$

$$ \geq \ - \frac{1}{2} \left ( 1 - \mathop{\rm exp} \int\limits _ { 0 } ^ \omega p ( t) dt \right ) \int\limits _ { 0 } ^ \omega p ( t) dt $$

and $ q ( t) \not\equiv 0 $ on $ [ 0 , \omega ] $.

In a number of applications there arises the question of the existence of oscillating solutions (in the above sense) of a system of ordinary differential equations. For example, in control theory one studies the oscillation relative to a given hyperplane $ \sum _ {i=1} ^ {n} c _ {i} x _ {i} = 0 $ of the solutions $ x ( t) = ( x _ {1} ( t) \dots x _ {n} ( t) ) $ of the system of equations $ x ^ \prime = f ( t , x ) $, that is, the question whether the function $ \sigma ( t) = \sum _ {i=1} ^ {n} c _ {i} x _ {i} ( t) $ oscillates. $ [ \alpha , \beta ] $- oscillating solutions are also studied; a bounded solution $ x ( t) $ of the system $ x ^ \prime = f ( t , x ) $ is called $ [ \alpha , \beta ] $- oscillating if $ \sigma ( t) $ is oscillating and for any $ t _ {1} \geq t _ {0} $ there are points $ t _ {2} $ and $ t _ {3} $ such that $ t _ {1} < t _ {2} < t _ {3} $, $ \sigma ( t _ {2} ) < \alpha $, $ \sigma ( t _ {3} ) > \beta $, where $ \alpha < 0 < \beta $. For the system $ x ^ \prime = f ( x , t ) $ there also exist other definitions of an oscillating solution.

References

[1] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[2] C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)
[3] I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)
[a1] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17
How to Cite This Entry:
Oscillating solution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Oscillating_solution&oldid=48085
This article was adapted from an original article by Yu.V. KomlenkoE.L. Tonkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article