Difference between revisions of "FKG inequality"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(details) |
||
(One intermediate revision by the same user not shown) | |||
Line 13: | Line 13: | ||
''Fortuin–Kasteleyn–Ginibre inequality'' | ''Fortuin–Kasteleyn–Ginibre inequality'' | ||
− | An inequality [[#References|[a3]]] that began a series of [[ | + | An inequality [[#References|[a3]]] that began a series of [[correlation inequalities]] for finite partially ordered sets. Let $\Gamma$ |
− | be a finite [[ | + | be a finite [[partially ordered set]] ordered by $\prec$ (irreflexive, transitive) with $ ( \Gamma, \prec ) $ |
− | irreflexive, transitive) with $ ( \Gamma, \prec ) $ | + | a [[distributive lattice]]: $ a \lor b = \min \{ {z \in \Gamma } : {a \preceq z, b \preceq z } \} $, |
− | a [[ | + | $ a \wedge b = \max \{ {z \in \Gamma } : {z \preceq a, z \preceq b } \} $, |
− | $ a \wedge b = \max \{ {z \in \Gamma } : {z \ | ||
and $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ | and $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ | ||
for all $ a,b, c \in \Gamma $. | for all $ a,b, c \in \Gamma $. | ||
+ | |||
Suppose $ \mu : \Gamma \rightarrow {[ 0, \infty ) } $ | Suppose $ \mu : \Gamma \rightarrow {[ 0, \infty ) } $ | ||
is log supermodular: | is log supermodular: | ||
Line 38: | Line 38: | ||
$$ | $$ | ||
− | \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) g ( a ) \right ] | + | \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) g ( a ) \right ] \leq |
− | |||
− | |||
− | |||
− | \leq | ||
\left [ \sum _ {a \in \Gamma } \mu ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) g ( a ) \right ] . | \left [ \sum _ {a \in \Gamma } \mu ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) g ( a ) \right ] . | ||
$$ | $$ | ||
If $ \Gamma $ | If $ \Gamma $ | ||
− | is a [[ | + | is a [[Boolean algebra]] and $ \mu $ |
− | is a [[ | + | is a [[probability measure]] on $ \Gamma $, |
the inequality is $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $, | the inequality is $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $, | ||
where $ {\mathsf E} _ \mu $ | where $ {\mathsf E} _ \mu $ | ||
− | denotes [[ | + | denotes [[mathematical expectation]]. |
Related inequalities are discussed in [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. | Related inequalities are discussed in [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. | ||
− | See also [[ | + | See also [[Ahlswede–Daykin inequality]]; [[Fishburn–Shepp inequality|Fishburn–Shepp inequality]]; [[Holley inequality|Holley inequality]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Bollobás, | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Bollobás, "Combinatorics" , Cambridge Univ. Press (1986)</TD></TR><TR> | ||
+ | <TD valign="top">[a2]</TD> <TD valign="top"> P.C. Fishburn, "Correlation in partially ordered sets" ''Discrete Appl. Math.'' , '''39''' (1992) pp. 173–191</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" ''Comm. Math. Phys.'' , '''22''' (1971) pp. 89–103</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> R.L. Graham, "Linear extensions of partial orders and the FKG inequality" I. Rival (ed.) , ''Ordered sets'' , Reidel (1982) pp. 213–236</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> R.L. Graham, "Applications of the FKG inequality and its relatives" , ''Proc. 12th Internat. Symp. Math. Programming'' , Springer (1983) pp. 115–131</TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Holley, "Remarks on the FKG inequalities" ''Comm. Math. Phys.'' , '''36''' (1974) pp. 227–231</TD></TR> | ||
+ | <TR><TD valign="top">[a7]</TD> <TD valign="top"> K. Joag-Dev, L.A. Shepp, R.A. Vitale, "Remarks and open problems in the area of the FKG inequality" , ''Inequalities Stat. Probab.'' , ''IMS Lecture Notes'' , '''5''' (1984) pp. 121–126</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L.A. Shepp, "The XYZ conjecture and the FKG inequality" ''Ann. of Probab.'' , '''10''' (1982) pp. 824–827</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> P M. Winkler, "Correlation and order" ''Contemp. Math.'' , '''57''' (1986) pp. 151–174</TD></TR> | ||
+ | </table> |
Latest revision as of 19:26, 13 April 2024
Fortuin–Kasteleyn–Ginibre inequality
An inequality [a3] that began a series of correlation inequalities for finite partially ordered sets. Let $\Gamma$ be a finite partially ordered set ordered by $\prec$ (irreflexive, transitive) with $ ( \Gamma, \prec ) $ a distributive lattice: $ a \lor b = \min \{ {z \in \Gamma } : {a \preceq z, b \preceq z } \} $, $ a \wedge b = \max \{ {z \in \Gamma } : {z \preceq a, z \preceq b } \} $, and $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ for all $ a,b, c \in \Gamma $.
Suppose $ \mu : \Gamma \rightarrow {[ 0, \infty ) } $ is log supermodular:
$$ \mu ( a ) \mu ( b ) \leq \mu ( a \lor b ) \mu ( a \wedge b ) \textrm{ for all } a, b \in \Gamma, $$
and that $ f : \Gamma \rightarrow \mathbf R $ and $ g : \Gamma \rightarrow \mathbf R $ are non-decreasing:
$$ a \prec b \Rightarrow \{ f ( a ) \leq f ( b ) , g ( a ) \leq g ( b ) \} \textrm{ for all } a,b \in \Gamma . $$
The FKG inequality is:
$$ \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) g ( a ) \right ] \leq \left [ \sum _ {a \in \Gamma } \mu ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) g ( a ) \right ] . $$
If $ \Gamma $ is a Boolean algebra and $ \mu $ is a probability measure on $ \Gamma $, the inequality is $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $, where $ {\mathsf E} _ \mu $ denotes mathematical expectation.
Related inequalities are discussed in [a1], [a2], [a4], [a5], [a6], [a7], [a8], [a9].
See also Ahlswede–Daykin inequality; Fishburn–Shepp inequality; Holley inequality.
References
[a1] | B. Bollobás, "Combinatorics" , Cambridge Univ. Press (1986) |
[a2] | P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191 |
[a3] | C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103 |
[a4] | R.L. Graham, "Linear extensions of partial orders and the FKG inequality" I. Rival (ed.) , Ordered sets , Reidel (1982) pp. 213–236 |
[a5] | R.L. Graham, "Applications of the FKG inequality and its relatives" , Proc. 12th Internat. Symp. Math. Programming , Springer (1983) pp. 115–131 |
[a6] | R. Holley, "Remarks on the FKG inequalities" Comm. Math. Phys. , 36 (1974) pp. 227–231 |
[a7] | K. Joag-Dev, L.A. Shepp, R.A. Vitale, "Remarks and open problems in the area of the FKG inequality" , Inequalities Stat. Probab. , IMS Lecture Notes , 5 (1984) pp. 121–126 |
[a8] | L.A. Shepp, "The XYZ conjecture and the FKG inequality" Ann. of Probab. , 10 (1982) pp. 824–827 |
[a9] | P M. Winkler, "Correlation and order" Contemp. Math. , 57 (1986) pp. 151–174 |
FKG inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=FKG_inequality&oldid=46896